Меню
Главная
Авторизация/Регистрация
 
Главная arrow Строительство arrow Строительство, реконструкция и ремонт водопроводных и водоотводящих сетей бестраншейными методами

МЕТОДЫ БЕСТРАНШЕЙНОГО ВОССТАНОВЛЕНИЯ УЧАСТКОВ ТРУБОПРОВОДОВ И СООРУЖЕНИЙ НА ПОДЗЕМНЫХ ИНЖЕНЕРНЫХ СЕТЯХ

Классификация методов бестраншейного восстановления трубопроводов

Основной способ бестраншейного восстановления (реконструкции и ремонта) подземных трубопроводов различного назначения — нанесение внутренних защитных покрытий (облицовок, оболочек, рубашек, мембран, вставок и т.д.) по всей длине трубопровода или в отдельных его местах.

Согласно современной международной классификации внутренние защитные покрытия могут выполняться в виде набрызговых оболочек, сплошных покрытий, спиральных оболочек, точечных (местных) покрытий.

Наиболее распространены следующие методы восстановления водопроводных и водоотводящих сетей бестраншейными способами:

  • • нанесение цементно-песчаных покрытий (ЦПП) на внутреннюю поверхность восстанавливаемого трубопровода;
  • • протаскивание нового трубопровода в поврежденный старый (с его разрушением и без разрушения) с помощью специальных устройств, например пневмопробойников;
  • • протаскивание гибкой полимерной трубы (предварительно сжатой или сложенной и-образной формы) внутрь ремонтируемого трубопровода;
  • • протаскивание сплошных защитных покрытий из различных полимерных материалов;
  • • использование гибких элементов из листового материала с зубчатой скрепляющей структурой;
  • • использование гибкого комбинированного рукава (чулка), позволяющего формовать новую композитную трубу внутри старой;
  • • использование рулонной навивки (бесконечной профильной ленты) на внутреннюю поверхность старого трубопровода;
  • • нанесение точечных (местных) покрытий и др.

Каждый из перечисленных методов восстановления отличается специфическими особенностями и имеет свои преимущества, определяющие область его применения. Целесообразность использования того или иного метода уточняется после детальных диагностических обследований и заключения технической экспертизы. В каждом конкретном случае рассмотрению подлежат состояние трубопровода, его размеры, вид транспортируемой среды, окружающая подземная инфраструктура, тип грунтов, наличие подземных вод и ряд других факторов, способных повлиять на выбор метода восстановления.

Представим краткое описание некоторых методов бестраншейного восстановления водопроводных и водоотводящих сетей.

Нанесение цементно-песчаных покрытий на внутреннюю поверхность трубопроводов (набрызговый метод). Использование набрызгового метода путем нанесения цементно-песчаных покрытий необходимо рассматривать в историческом аспекте, и прежде всего как антикоррозионную изоляцию внутренней поверхности трубопроводов.

Освоение бестраншейных технологий в нашей стране в виде наложения антикоррозионной изоляции на внутреннюю поверхность ветхих трубопроводов в полевых условиях началось в 40-х гг. XX в. Среди первых защитных материалов были красочные покрытия и битумная изоляция (асфальтировка), которые позволяли продлить срок службы трубопроводов на несколько лет. Однако практика эксплуатации показала, что после 10—12 лет работы трубопровода асфальтировка разрушалась, превращаясь в хрупкую пористую массу, а через 20 лет пористость составляла до 60%, что более не обеспечивало сохранность стенок трубы.

В 50—60-е гг. прошлого века были предприняты попытки применения в качестве ремонтного покрытия пластмассовой крошки, напыляемой на внутреннюю поверхность подземных трубопроводов, однако данный метод из-за сложности технологии не получил широкого распространения, несмотря на разнообразие предложенных защитных материалов.

В тот же период для защиты подземных трубопроводов начали применять асбестоцементные покрытия, наносимые механизированным способом, который обеспечивал высокую плотность и хорошее сцепление с металлом на внутренней поверхности труб. Для уменьшения шероховатости стенок труб одновременно с наложением раствора производилось заглаживание его вращающимися лопатками. Данный метод и технология нанесения раствора стали своеобразным предвестником применения в нашей стране более совершенного, эффективного и экологичного цементно-песчаного покрытия.

Необходимо отметить, что защитные свойства цементного покрытия по отношению к металлу известны уже более 150 лет. Еще в 1836 г. на основе исследований Французской академии наук было рекомендовано применение цемента в качестве дешевого и простого средства для защиты стали от коррозии. В США начиная с 1931 г. облицовка чугунных и стальных труб цементным раствором становится общепринятой практикой.

Покрытие на основе цемента обладает особым свойством — пассивным и активным эффектом. Пассивный достигается за счет механической изоляции стенок труб прочным защитным слоем, а активный эффект — в результате образования на поверхности раздела цементного покрытия и стенки трубы насыщенного раствора гидрооксида кальция с pH = 12,6. При этих условиях низколегированная сталь не подвергается коррозии. Одновременно цементно-песчаное покрытие обладает свойством самолечения. Оно заключается в том, что трещины и щели, которые могут возникнуть в процессе нанесения и схватывания раствора, самозакупориваются как вследствие разбухания материала, так и выделяющимися известковыми отложениями в виде карбоната кальция.

Первый опыт применения цементно-песчаных покрытий в Москве относится к 1968 г., когда были проведены работы по защите участка стального водовода второго подъема внутренним диаметром 1200 мм и длиной 110 м (3-й Краснопресненский водовод). Проводимые каждые 10 лет со дня пуска водовода в эксплуатацию комплексные проверки качества цементно-песчаного покрытия показывали его стабильность, подтверждая долговечность материала и правильность принятия решения по реновации сети цементно-песчаным покрытием.

В настоящее время цементно-песчаные покрытия, тем не менее, постепенно уступают место новым полимерным материалам в виде тонких оболочек, плетей труб, отдельных коротких трубных модулей, рулонных навивок и др. Цементно-песчаные покрытия используют в основном для внутренней облицовки стальных (реже чугунных) трубопроводов систем водоснабжения наружным диаметром 76—2020 мм, однако их применение не исключено и в системах водоотведения (в напорных трубопроводах).

Работы по нанесению цементно-песчаных покрытий выполняются методами центрифугирования или центробежного набрызга. Они включают проведение подготовительных технических мероприятий, а также подготовку и приготовление компонентов смеси. Цементно-песчаное покрытие внутренней стенки трубопровода является надежным средством ликвидации различного рода дефектов, а также антикоррозионным материалом. Однако такие покрытия не могут быть использованы для восстановления сильно разрушенных трубопроводов.

Контроль за процессом нанесения цементно-песчаных оболочек состоит в измерении толщины защитного слоя и проверке качества шлифования. После нанесения защитного покрытия на его внутреннюю поверхность металлический трубопровод может рассматриваться в качестве многослойной трубы, внутренняя поверхность которой выполнена из гладкого тонкостенного бетона с соответствующими прочностными показателями и гидравлическими характеристиками потока.

Со временем в результате интенсивной эксплуатации трубопровода возможно механическое или химическое разрушение защитного слоя. Механическое разрушение покрытия вызывается следующими факторами: избыточная проницаемость покрытия, которая исключается при его плотности 300—400 кг/м3; появление трещин — в основном из-за нарушения технологии приготовления и нанесения покрытия (например, из-за несоблюдения водоцементного отношения, отсутствия специальных добавок-пластификаторов); эрозия, проявляющаяся при скорости течения воды по трубам более 4 м/с или при больших температурных перепадах.

В свою очередь, химическое разрушение покрытий может быть вызвано следующими причинами: агрессивность С02, воздействие сильных кислот высокие концентрации аммиака, сульфатов, сильных щелочей, а также биологическая коррозия с образованием сероводорода Н28. Перечисленные обстоятельства позволяют сделать вывод, что для водопроводных труб, защищенных цементно-песчаными покрытиями, наиболее характерными факторами разрушения являются механические, а для водоотводящих — как механические, так и химические, что во многом предопределяет целесообразность использования защитных цементно-песчаных покрытий в водоотводящих сетях, транспортирующих агрессивные к покрытиям сточные воды.

Следует отметить, что применение метода ремонта трубопроводов с нанесением цементно-песчаных покрытий не всегда возможно или неэффективно при разветвленной сети, включающей трубопроводы разного диаметра. В этих случаях при нанесении цементно-песчаных покрытий может произойти закупорка ответвлений (перемычек) с меньшими проходными сечениями.

С другой стороны, если имеется альтернатива использования двух способов реновации сети — прокладки нового трубопровода с ЦПП или ремонта старого с нанесением цпп на месте, то чаще предпочтение отдают второму. Дело в том, что избежать повреждения (в период транспортировки или укладки) новых трубопроводов с предварительно нанесенным ЦПП (т.е. в заводских условиях) очень трудно. Трубопроводы с нанесенным ЦПП могут быть подвергнуты нагрузке с радиусом изгиба не менее 500-кратного диаметра трубы (германские нормы 2614).

В последнее время альтернативой нанесению цементно-песчаных покрытий на внутреннюю поверхность трубопроводов служит напыление быстро затвердевающих на воздухе специальных составов, стойких к агрессивным веществам, например по методу «Трайтон», разработанному фирмой «CUES» (США). В отличие от цементирования, при котором наносится достаточно толстый слой защитной оболочки и не исключено ее сползание под действием силы тяжести, облицовка «Трайтон», в состав которой входит более 20 различных веществ, имеет толщину 1 мм и застывает в течение 30 минут, тогда как цементно-песчаное покрытие твердеет 24 часа.

Набрызговые методы восстановления водоотводящих трубопроводов имеют еще одно преимущество. Оно проявилось лишь в последние годы при решении вопросов совмещения обновления водоотводящих коллекторов с прокладкой в них оптиковолоконных кабелей. Отверждаемая на месте обделка любого вида способствует надежному креплению в верхней части внутренней поверхности трубопровода специальных модулей с кабелями различного назначения. Таким образом, достигается двойной эффект: проводится экономичный бестраншейный ремонт трубопроводной сети и коммерциализация пустого пространства в верхней части трубопроводов.

Протаскивание нового трубопровода в поврежденный старый (с его разрушением и без разрушения). Основным достоинством данного метода является возможность восстановления сильно разрушенных трубопроводов путем прокладки нового, например полиэтиленового низкого давления (ПНД), на месте старого. Протаскивание нового трубопровода в старый наиболее перспективно в тех случаях, когда необходима полная замена ветхого трубопровода с увеличением диаметра сети.

В отечественной и зарубежной практике широко применяется метод разрушения старых труб по трассе между двумя колодцами с протаскиванием в освобождающееся пространство отдельных трубчатых модулей (рис. 1.26).

После разрушения старых трубопроводов их место могут занимать новые из различных материалов, как правило несколько большего диаметра, чем вышедшие из строя. Бестраншейный метод замены труб путем разрушения и протягивания новых имеет некоторые преимущества по сравнению с другими: увеличение диаметра трубы ведет к повышению ее пропускной способности; при реализации метода может использоваться трубопровод из полимерных материалов, который не имеет стыковых соединений и выдерживает большие нагрузки при сроке эксплуатации 50—100 лет. Кроме того, метод можно использовать в нестабильных грунтах при их минимальной разработке в период реконструкции.

Разрушение старого трубопровода и протаскивание нового из отдельных модулей с помощью пневмоударной машины

Рис. 1.26. Разрушение старого трубопровода и протаскивание нового из отдельных модулей с помощью пневмоударной машины:

  • 1 — пневматическая лебедка; 2 — компрессор; 3 — секции (модули) нового трубопровода; 4 — рабочий колодец; 5 — воздухоотводной шланг; 6 — пневмоударная машина; 7 — новый трубопровод; 8 — расширитель;
  • 9 — заменяемый трубопровод; 10 — анкер; 11 — приемный колодец;
  • 12 - трос лебедки

Протягивание нового трубопровода с параллельным разрушением старого может осуществляться с помощью пневмоударных машин или пневмопробойников, оснащенных разрушающими гильзами с соответствующими ножами (рис. 1.27). Энергия, необходимая для передвижения устройства по трассе старого трубопровода, подается от компрессора. Взламывающий нож разрушает старую трубу и уплотняет осколки в окружающий природный грунт. Расширитель создает увеличенный профиль для новой трубы, которая затягивается в освобождающееся пространство одновременно с процессом разрушения.

В последние годы в России на ряде объектов использовалась технология замены ветхих неметаллических трубопроводов после их разрушения полиэтиленовыми с помощью раскатчиков. Данная технология предусматривает использование специального рабочего органа — раскатчика с силовым приводом. Раскатчик устанавливается в рабочий котлован краном или вручную. После

Комплект пневмопробойника фирмы «СШЛ/ООК'Я/АСК» с разрушающей гильзой и расширителем

Рис. 1.27. Комплект пневмопробойника фирмы «СШЛ/ООК'Я/АСК» с разрушающей гильзой и расширителем:

1 — трос лебедки; 2 — направляющая штанга; 3 — разрушающая гильза-нож; 4 — расширитель; 5 — клеммы; 6 — шланг высокого давления

обеспечения соосности раскатчика и разрушаемого трубопровода осуществляется ввертывание раскатчика в трубопровод и вдавливание обломков разрушенной трубы в стенки образуемой скважины. При этом грунт вытесняется в радиальном направлении и вокруг скважины образуется уплотненная зона грунта. Практика показывает, что поверхностный слой грунта толщиной 10—15 мм в стенках скважины настолько спрессован, что его прочность сопоставима с прочностью бетонной трубы той же толщины. После выхода рабочего органа в приемный котлован и его отсоединения к концу приводных штанг подсоединяют полиэтиленовую трубу (цельную или отдельными секциями), которую затягивают в образовавшуюся скважину обратным ходом штанг.

Необходимо отметить, что основной недостаток этих двух методов протаскивания трубопроводов с помощью пневмопробойников и раскатчиков состоит в том, что в грунте возникают ударные волны, которые могут повредить коммуникации, расположенные в непосредственной близости от восстанавливаемого трубопровода, или нарушить грунтовый свод вокруг них, что впоследствии приводит к различным дефектам, вплоть до разрушения пересекающихся коммуникаций. Для исключения этих явлений должны быть детально изучены геологические условия местности и проведено предварительное шурфование, подтверждающее или опровергающее наличие соседних коммуникаций на безопасном расстоянии.

В настоящее время способы разрушения старых труб из асбестоцемента, чугуна, керамики и пластика широко применяются в ряде стран. На некоторых отечественных и зарубежных объектах реновации для разрушения стальных трубопроводов использовался разрушающий наконечник, действующий как консервный нож и разрезающий трубопровод на две половины. Средняя скорость передвижения установки с разрушающим наконечником — около 80 м/ч. Некоторое снижение скорости наблюдается лишь при прохождении наконечника через резьбовые соединения труб.

Бестраншейная замена старых трубопроводов на новые может производиться и без их разрушения; схема протаскивания нового полимерного трубопровода в старый представлена на рис. 1.28. В данном случае используется новый полимерный трубопровод, сматываемый с бобины (бухты, барабана) и протягиваемый с помощью пневмолебедки и троса через футляр и колодец в ветхий участок водопроводной сети. Учитывая предрасположенность полиэтиленовых труб к порезам случайными твердыми включениями в канале при протягивании, для снижения до минимума возможности повреждения наружной поверхности трубопровода могут применяться специальные короткие пластмассовые сегменты и рейки, которые надеваются на протягиваемый трубопровод через определенные интервалы (рис. 1.29).

Для предотвращения порезов наружной поверхности полиэтиленовых труб применяются следующие способы: нанесение в заводских условиях утолщенной внешней оболочки, чтобы возможные повреждения затронули только ее; использование полиэтиленовых труб со стойкой к механическим повреждениям наружной полипропиленовой оболочкой.

В некоторых городах России при восстановлении водоотводящей сети без разрушения и с разрушением широко применяют короткие трубные полимерные модули. При этом особое внимание при их использовании для бестраншейного восстановления

Восстановление участка ветхой водопроводной сети без разрушения с помощью полимерных труб

Рис. 1.28. Восстановление участка ветхой водопроводной сети без разрушения с помощью полимерных труб

Пластмассовые сегменты и рейки фирмы ОАО «Метафракс» для защиты трубопроводов при протягивании

Рис. 1.29. Пластмассовые сегменты и рейки фирмы ОАО «Метафракс» для защиты трубопроводов при протягивании

уделяется конструкциям соединительных узлов. Например, соединение труб из поливинилхлорида (ПВХ) выполняется на раструбах с уплотнением резиновыми кольцами, а также склеиванием. Клеевые соединения имеют продолжительную по времени технологическую паузу (время между окончанием процесса и допустимостью приложения монтажных нагрузок для обеспечения соответствующей прочности): от 0,5 часа (при искусственном прогреве клеевого стыка) до суток (при формировании клеевого шва в естественных условиях, без подогрева).

Основной способ соединения труб из полиолефинов — контактная сварка встык. Для получения качественного соединения также требуется продолжительная технологическая пауза (20 минут). На рис. 1.30 показана установка для сварки труб диаметром 900 мм в плеть в полевых условиях.

Для раструбных соединений с резиновыми уплотнительными кольцами не требуется технологической паузы. Однако существенным недостатком таких соединений являются их внешние размеры. При затягивании нового трубопровода в полость, образованную при разрушении стенок заменяемого трубопровода, требуется мощное оборудование (например, пневмоударные машины), так как используется больший по размерам и мощности расширитель. Кроме того, наличие на поверхности нового трубопровода раструбных выступов, соразмерных с осколками разрушенных

Фрагмент подготовки полимерных труб для сварки

Рис. 1.30. Фрагмент подготовки полимерных труб для сварки

труб (например, острых керамических), может способствовать их захвату и неконтролируемому волочению вдоль поверхности пластмассовых труб, что вызовет появление порезов на поверхности трубы. Такие дефекты для безнапорных трубопроводов не так опасны, как для напорных. Тем не менее при расположении глубоких продольных порезов вблизи шелыг пластмассовых труб возможна их овализация под действием грунтовых и транспортных нагрузок, что, в свою очередь, может привести к преждевременному выходу трубопровода из строя.

Для бестраншейной сборки труб из полимерных материалов используются замковые и резьбовые соединения. Им, также как и раструбным, не требуется технологическая пауза. Резьбовые соединения могут быть различны как по сечению (треугольные, прямоугольные, трапециевидные, округленные), так и по размерным характеристикам составных элементов резьбы и соединения в целом (высота, длина и шаг, количество витков, наличие сбега и заходной части и место ее расположения).

Основное достоинство описанных методов восстановления путем протаскивания труб — их достаточно высокая производительность при относительной простоте операций. Однако недостатком метода протаскивания без разрушения ветхого трубопровода является уменьшение его внутреннего диаметра после ремонта.

Следует отметить, что при выборе для бестраншейной реновации сетей метода протягивания и закрепления в предварительно разрушаемом трубопроводе полимерных оболочек или труб возникает необходимость тщательной диагностики состояния и структуры грунта вокруг ремонтного участка сети.

Протаскивание деформированных полимерных труб и защитных оболочек внутрь ремонтируемого трубопровода. При нанесении на внутреннюю поверхность трубопровода оболочек в виде деформированных (профилированных, сплющенных) полимерных труб обеспечивается не только герметичность стенок, но и их высокая сопротивляемость динамическим нагрузкам. Введение в трубопровод и закрепление в нем защитной оболочки может достигаться двумя способами.

Первый способ — протаскивание бесшовного полимерного материала, например пластиковой профилированной трубы, поперечное сечение которой имеет и-образную форму, на всю длину ремонтного участка между двумя колодцами с последующим прижатием ее к внутренней стенке путем подачи под давлением теплоносителя (например, водяного пара, горячей воды), в том числе для принятия покрытием круглой формы (рис. 1.31). Данная технология разработана фирмой «Preussag» и названа «Слип лайнинг».

Фрагмент ввода профилированной трубы в колодец (а) и ее расположение в трубопроводе(б)

Рис. 1.31. Фрагмент ввода профилированной трубы в колодец (а) и ее расположение в трубопроводе(б)

С помощью этой технологии и ее модификаций восстановлено свыше 800 км трубопроводов в разных странах мира. Преимущество технологии состоит в том, что при реновации используются тонкие полиэтиленовые трубы, которые позволяют восстановить сети практически без уменьшения живого сечения трубопроводов.

Второй способ — введение в старый трубопровод предварительно сжатого по всему сечению (деформированного) нового полимерного трубопровода, имеющего «термическую память» принятия необходимой формы с течением времени (технология «Свейдж лайнинг»). Ремонт выполняется путем сварки секций полиэтиленовых труб друг с другом и протяжки их через пуансон или специальную сужающую матрицу с меньшим диаметром, чем диаметр полимерной трубы (рис. 1.32). После этого плеть вводят в старую трубу с помощью троса и лебедки, установленной в следующем по ходу движения трубы колодце.

Со временем сжатая труба распрямляется до естественного состояния и прилегает к внутренней поверхности восстанавливаемого трубопровода (рис. 1.33). Полимерная труба расширяется до тех пор, пока ее внешний диаметр не достигнет размера внутреннего диаметра старого трубопровода и не образует с его стенкой плотного соединения. При этом отпадает необходимость применения цементного раствора или специальных отвердителей.

Протаскивание сплошных защитных покрытий из различных полимерных материалов. На санируемые трубопроводы систем водоснабжения и водоотведения могут наноситься защитные внутренние покрытия (оболочки, мембраны, рукава), которые обеспечивают полную герметичность стенок, а также их высокую сопротивляемость динамическим нагрузкам.

Рис. 1.33. Новая полиэтиленовая труба после принятия первоначальной формы в старом трубопроводе

Пропуск полимерной трубы через матрицу для временного уменьшения диаметра

Рис.1.32. Пропуск полимерной трубы через матрицу для временного уменьшения диаметра

Введение в трубопровод и закрепление в нем оболочки могут достигаться либо путем протаскивания бесшовного покрытия на всю длину ремонтного участка между двумя колодцами с последующим прижатием ее специальным грузом в форме баллона и подачей под давлением горячего воздуха или водяного пара (рис. 1.34), либо постепенным введением на ремонтный участок скрученной в рулон оболочки в виде чулка (лайнера) с

Нанесение внутреннего защитного покрытия из гибких

Рис. 1.34. Нанесение внутреннего защитного покрытия из гибких

пластических материалов:

1 — восстанавливаемый участок трубопровода; 2 — защитное покрытие; 3 — направляющий ролик; 4 — лебедка; 5 — трос; 6 — емкость с горячим

воздухом (паром); 7 — специальный груз

прижатием ее к стенке жидкостью, подаваемой под давлением (рис. 1.35). Ввод оболочки в трубопровод осуществляется через открытый люк колодца.

Нанесение внутреннего защитного покрытия по технологии фирмы

Рис. 1.35. Нанесение внутреннего защитного покрытия по технологии фирмы

«Entrepose»:

1 — восстанавливаемый трубопровод; 2 — защитное покрытие в виде выворачивающегося наружу чулка; 3 — направляющие ролики

В результате процесса полимеризации происходит затвердевание сплошной защитной оболочки, после чего все устройства и жидкость из трубопровода удаляются. Коммуникации могут быть сданы в эксплуатацию через несколько суток после проведения описанных операций. Данный метод широко используется рядом западно-европейских фирм, в частности: «Соса», «Entrepose T. Р.», «Le Joint Jnterne» и т.д.

Особого внимания с технической точки зрения заслуживает технология нанесения сплошных полимерных рукавов «Феникс», которая является одним из эффективных способов восстановления внутренней поверхности изношенных трубопроводов систем водо- и газоснабжения.

Использование гибких элементов из листового материала с зубчатой скрепляющей структурой. Этот метод восстановления водоотводящих сетей основан на применении полимерной облицовки из элементов продольного сечения, образующих при соединении друг с другом внутреннюю защитную оболочку трубопровода. Метод разработан германской фирмой «ТгоИпш#». Технология нанесения защитного покрытия состоит в протягивании из колодца через дефектный участок трубопровода гибких и высокопрочных полиэтиленовых заготовок, соединяемых внутри трубопровода с помощью экструзионной сварки. Для плотной фиксации облицовки к внутренней поверхности трубопровода в кольцевую полость между стенкой трубы и облицовкой инъецируется цементирующий материал, а в трубопровод нагнетается вода, которая распрямляет облицовку и прижимает ее к стенкам.

Система внутренних гибких сегментов «Тго1шп%» позволяет применять различные типы секций (рис. 1.36), отличающихся друг

Установка листовых полимерных зубчатых секций по технологии

Рис. 1.36. Установка листовых полимерных зубчатых секций по технологии

«Тгоііпіпд»:

а — базисная система установки (с одной зубчатой секцией и заполнением пустот между внутренней поверхностью трубы и зубчатыми элементами);

б — то же с использованием промежуточного защитного слоя; в — то же с использованием дополнительного упругого элемента вокруг зубчатой секции; г— система установки с двумя зубчатыми секциями;

  • 1 — поврежденная труба; 2 — инжектор фирмы «Тгоііпіпд»; 3 — зубчатая секция;
  • 4 — защитный слой; 5 — упругий элемент

от друга структурой поверхности (однослойной, многослойной и комбинированной с защитными слоями).

Использование гибкого комбинированного рукава (чулка). Сущность этого метода восстановления состоит в образовании внутри ремонтного участка трубопровода новой композитной тонкостенной трубы, обладающей достаточно самостоятельной несущей способностью при минимальном снижении диаметра действующего трубопровода.

Для реализации метода внутрь ветхого трубопровода через смотровые колодцы пропускают комбинированный рукав, представляющий собой пропитанный термореактивным связующим армирующий материал (стеклоткань, синтетический войлок). Затем во внутреннюю герметичную оболочку комбинированного рукава под давлением подается теплоноситель (пар, горячая вода), который расправляет рукав, прижимает его к внутренней поверхности трубопровода и полимеризует связующее, образуя новую композитную трубу.

Выворот и продвижение комбинированного рукава в трубопроводе можно осуществлять с помощью гибкого элемента (троса), жидкой или газовой среды, подаваемой под давлением, а также совместным использованием обоих способов.

Основные преимущества метода протаскивания комбинированного рукава — простота и доступность технологии и оборудования для ее реализации, высокое качество и долговечность защитного покрытия, возможность ремонта достаточно изношенных трубопроводов (независимо от материала изготовления) в широком диапазоне их диаметров и длин. С помощью пластикового комбинированного рукава можно восстанавливать круглые, овальные и специальные профили труб.

Использование рулонной навивки (бесконечной профильной ленты) на внутреннюю поверхность старого трубопровода. Для реновации безнапорных водоотводящих трубопроводов могут применяться методы «ЮЫос» и «Ехрапс1а-Рфе». Они позволяют облицовывать внутреннюю поверхность трубопроводов поливинилхлоридной лентой. Для этого в колодце устанавливается специальный станок, осуществляющий несколько функций: нанесение (навивку) бесконечной ленты по внутреннему диаметру трубопровода, ее крепление; заливку клеющей смолы; проталкивание образовавшегося каркаса из ПВХ внутрь ремонтного участка трубопровода, расширение каркаса для его фиксации на восстанавливаемом сооружении (рис. 1.37). После процесса наматывания оставшееся

Фрагмент нанесения ленточного защитного покрытия по технологии

Рис. 1.37. Фрагмент нанесения ленточного защитного покрытия по технологии

«Я/'Ь/ос» из колодца

свободное кольцевое пространство между восстанавливаемой трубой и новым каркасом заполняется специальным раствором и уплотняется трамбовкой для повышения статической прочности.

По технологии «Panel Lok», разработанной фирмой «Camit Ltd» (Австралия), для наматывания применяется специальная профилированная лента из ПВХ, которая имеет снаружи Т-образные рифления. Рифления увеличивают структурную поверхность и обеспечивают механическое сцепление с цементным раствором, инъектируемым между обделкой и стенкой восстанавливаемого трубопровода. Профилированную ленту можно применять для круглых, овальных и прямоугольных сечений трубопроводов диаметром от 900 мм, обладающих достаточной несущей способностью.

При использовании некоторых модификаций метода рулонной навивки функционирование трубопровода может не прекращаться.

Точечные (местные) защитные покрытия. Данный тип покрытий характерен для ликвидации одиночных (точечных) сквозных, в том числе периферийных, трещин, вызванных подвижкой грунта (например, при проведении вблизи трасс земляных работ, воздействии на трубопроводы сверхнормативных нагрузок от дорожного движения, землетрясений и т.д.), а также местной коррозией стенок трубопроводов. Покрытия для точечного ремонта могут также использоваться в качестве герметичных соединений отдельных труб при реализации различных способов бестраншейного восстановления сетей.

Местные повреждения, явившиеся причиной химической эрозии стенок трубопроводов, могут развиваться очень быстро и приводят к преждевременному выходу трубопровода из строя. Данные статистики показывают, что такого рода повреждения составляют около 10% длины трубопровода.

Покрытия для местного ремонта могут поставляться в виде: жидких растворов, твердеющих после операций нанесения на поврежденные поверхности; растворов полужидкой консистенции; волокнистых материалов с пропиткой смолами (полиэфирными, эпоксидными и полиуретановыми); профильных резиновых уплотнителей; гильз из нержавеющей стали; эластичных рукавных заготовок; трубчатых вкладышей и т.д.

Перед реализацией любого из описанных выше методов ремонта действующих сетей и сооружений водоснабжения или водоотведения необходима прокладка временных наружных обводных трубопроводов. Например, в случаях восстановления водопроводных сетей обводные трубопроводы должны обеспечивать на период ремонта подачу потребителю хозяйственно-питьевой воды в требуемом количестве и соответствующего качества. Кроме того, обводные трубопроводы должны удовлетворять определенным требованиям, изложенным в технических условиях на производство ремонтных работ, они должны быстро монтироваться и демонтироваться и обеспечивать соответствующие санитарно-гигиенические показатели транспортируемой воды. Поскольку эти трубопроводы прокладываются снаружи вдоль тротуарных бортовых камней, они должны выдерживать удары шин транспортных средств, а также быть рассчитаны на восприятие полного гидродинамического давления воды. При этом весьма важна адаптация обводных трубопроводов к стандартным фитингам, контрольно-регулировочной и запорной арматуре.

В табл. 1.2 представлены данные о наиболее распространенных методах бестраншейного восстановления водопроводных и водоотводящих трубопроводов с подробными техническими, технологическими и эксплуатационными показателями. Анализ различных методов бестраншейного восстановления напорных и безнапорных сетей свидетельствует, что не существует универсального подхода к ремонту или замене трубопроводов. Каждый из предложенных методов ограничен соответствующими рамками применения, которые должны удовлетворять сложившимся техническим условиям на различных объектах, а также материальным и другим возможностям эксплуатирующих сети организаций.

Следует отметить, что при многих положительных сторонах современных технологий бестраншейного восстановления трубопроводов нельзя допускать «эйфории санации», которая может быть следствием субъективных и не полностью оправданных решений, необоснованных критериев или велением моды на бестраншейные технологии. Абсолютный приоритет применению бестраншейных технологий ремонта может быть отдан только в тех случаях, когда требующие ремонта инженерные коммуникации располагаются ниже других городских подземных сооружений и их раскопки связаны со значительными трудностями. Например, в Гонконге некоторые водоотводящие коллекторы проложены ниже линий метрополитена. Данное обстоятельство однозначно отдает предпочтение бестраншейным методам в случае необходимости ремонта или замены сетей.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Пред   СОДЕРЖАНИЕ   След >
 

Популярные страницы