ПРОЦЕСС ВЫВЕТРИВАНИЯ

Под процессом выветривания понимают разрушение и изменение состава горных пород и строительных материалов, происходящие под воздействием различных агентов, действующих на поверхности земли, среди которых основную роль играют колебания температур, замерзание воды, кислот, щелочей, углекислоты, действие ветра, организмов и т. д.

Главной особенностью процесса выветривания является постепенное и постоянное разрушение верхних слоев литосферы. В результате этого горные породы и материалы дробятся, изменяют свой химико-минеральный состав, вследствие чего снижаются параметры их строительных свойств или они полностью разрушаются.

Интенсивность проявления выветривания зависит от многих причин — активности агентов выветривания, состава пород, геологического строения местности и т. д. Наиболее сильно выветривание проявляется у поверхности земли, куда облегчен доступ агентам выветривания. Глубина проникновения в толщу земли агентов выветривания зависит от степени трещиноватости пород, раскрытия и глубины трещин. Наиболее глубоко они проникают при наличии тектонических трещин и разломов. Область активного современного выветривания достигает глубины 5—10 м. Проникновению агентов выветривания способствует инженерная деятельность человека (проходка тоннелей, шахт и т. д.).

Интенсивность выветривания находится в зависимости от состава пород. Разрушению способствуют разнозернистость, круп-нозернистость пород, качество природного цемента, например, песчаник с глинистым цементом разрушается значительно легче и быстрее, чем песчаник с кремнеземистым цементом.

Воздействие на земную поверхность, на толщи скальных горных пород процесса выветривания приводит к образованию коры выветривания, которая состоит из видоизмененных выветриванием горных пород или продуктов их разрушения (рис. 97). Продукты выветривания горных пород, остающиеся на месте их образования, носят название элювия. Вниз по разрезу всегда четко прослеживается, как элювий постепенно переходит в свою «материнскую» породу. По составу он представляет собой смесь обломков этой породы и глинистого материала. Нескальные породы, залегающие на дневной поверхности, также имеют кору выветривания, но она в большинстве случаев не имеет четкой зональности. Верхняя часть коры обычно бывает представлена песчано-пылевато-глинистой массой, а нижняя — обломочным материалом. В карбонатных грунтах, например известняках, зональность коры выветривания проявляется более четко.

Виды выветривания. Процесс выветривания протекает при одновременном участии многих агентов, но роль их при этом дале-

Выветривание грунтовых горных пород

Рис. 97. Выветривание грунтовых горных пород:

а — нагромождение материала выветривания; б— схема выветривания; /—кора выветривания; 2—коренная порода (порода, не затронутая выветриванием)

ко неодинакова. По интенсивности воздействия тех или иных агентов выветривания и характеру изменений горных пород принято выделять три вида выветривания: физическое, химическое и биологическое (органическое).

Физическое выветривание выражается преимущественно в механическом дроблении пород без существенного изменения их минерального состава. Породы дробятся в результате колебания температур, замерзания воды, механической силы ветра и ударов песчинок, переносимых ветром, кристаллизации солей в капиллярах, давления, которые возникают в процессе роста корней растений, и т. д.

Большую роль в этом разрушении играют температурные явления. В условиях земной поверхности, особенно в пустынях, суточные колебания температур довольно значительны. Так, летом в дневное время породы нагреваются до +80 °С, а ночью их температура снижается до +20 °С. Кроме попеременного нагревания и охлаждения разрушительное действие оказывает также неравномерное нагревание пород, что связано с различными тепловыми свойствами, окраской и размером минералов, которые составляют горные породы. На контактах отдельных минералов образуются микротрещины и порода постепенно распадается на отдельные блоки и обломки различной формы.

Особенно подвержены температурному выветриванию крупнозернистые полиминеральные породы. Это объясняется тем, что минералы имеют различные коэффициенты линейного и объемного расширения и при нагревании на контактах между зернами создаются большие напряжения различной направленности, которые приводят к разрушению менее прочных минералов. При колебаниях температур в этих породах происходит разрушение кристаллизационных связей между зернами.

Разрушение пород еще более усиливается, если в их микротрещины проникает вода, которая при замерзании увеличивается в объеме на 9—11 % и развивает значительное боковое давление; трещины расширяются и углубляются. Это явление носит название морозного выветривания.

Многие породы разрушаются при переменном намокании и высушивании. Примером могут служить мергели-трескуны из района Новороссийска. Эти мергели на поверхности земли быстро превращаются из массивной породы в скопление мелких обломков.

Значительное разрушительное действие оказывает ветер своей механической силой и ударным действием песчинок и более крупных обломков.

Физическое выветривание воздействует и на искусственные строительные материалы. Особенно интенсивно выветриваются наружные части зданий и сооружений.

Физическое выветривание преобладает в местностях с сухим резко континентальным (пустыни) или холодным климатом (горные районы, арктический пояс). Типичным примером являются пустыни и северные территории нашей страны (см. рис. 73, а).

Химическое выветривание выражается в разрушении горных пород путем растворения и изменения их состава. Наиболее активными химическими реагентами в этом процессе являются вода, кислород, углекислота и органические кислоты.

В породах кроме растворения протекают реакции обмена, замещения, окисления; гидратация и дегидратация. Одновременно с разрушением первичных минералов, например полевых шпатов, в граните образуются новые, вторичные минералы. Так образуются многие растворимые (хлориды, карбонаты, сульфаты) и нерастворимые минералы типа глинистых образований (гидрослюды, монтмориллонит, каолинит и др.).

Простейшим видом химического выветривания является растворение в воде. Легко растворяются каменная соль, гипс. Разрушительное действие оказывает процесс гидратации. Примером может служить переход ангидрита в гипс Са804 + 2Н20 = = Са804 • 2Н20. Этот процесс сопровождается резким увеличением объема (до 50—60 %), что вызывает разрушительное давление гипса на окружающие породы. В присутствии воды происходит также окисление. Например, минерал пирит, который часто присутствует в различных породах, превращается в гидрат оксида железа с одновременным образованием серной кислоты, которая, в свою очередь, весьма разрушительно действует на многие минералы:

Ре82 + 70 + Н20 = Ре804 + Н2804 6Ре804 + 30 + ЗН30 = 2Ре(804)3 + 2 Ре(ОН)3

При химическом выветривании значительное воздействие на породы оказывает вода, содержащая в своем составе углекислоту. В результате этого полевые шпаты превращаются во вторичные образования глинистого состава:

К(А18ЬА) + С02 + «Н20 ->

полевой шпат

-> А14[(8цО10](ОН)8 + К2С03 + 48Ю2 • яН20

каолинит

Интенсивность химического выветривания зависит от площади воздействия воды и растворов, их температуры, а также степени устойчивости минералов в отношении агентов выветрива-

ния. Наиболее устойчивыми являются минералы кварц, мусковит, корунд; менее устойчивы — кальцит, доломит и др. Интенсивности химического выветривания способствует дробление пород в результате механического выветривания.

Наибольшее значение химическое выветривание имеет в условиях теплого и влажного климата.

Биологическое (органическое) выветривание проявляется в разрушении горных пород в процессе жизнедеятельности живых организмов и растений (рис. 98). Породы дробятся и в значительной мере подвергаются воздействию органических кислот.

Механическое разрушение производят растения своей корневой системой. Корни деревьев способны расщеплять даже прочные скальные породы. Известны случаи, когда растение «верблюжья колючка» прорастало сквозь 20-сантиметровые железобетонные плиты. Корни травянистой растительности легко преодолевают слой асфальта на улицах города.

Многие живые организмы, особенно из числа землероев, активно разрушают горные породы. В коре выветривания они создают многочисленные ходы, пустоты, просверливают даже твердые породы. На выветривание горных пород большое влияние оказывают многочисленные бактерии. В процессе своей жизнедеятельности они поглощают одни вещества и выделяют другие. Их воздействие особенно сильно сказывается в зоне почв и на границе с подстилающими грунтами. Отдельные виды бактерий извлекают углерод из карбонатов, разрушают силикаты, создают скопление железных руд и т. д.

Разрушение асфальтового покрытия в результате роста грибов

Рис. 98. Разрушение асфальтового покрытия в результате роста грибов

Растения и животные, особенно микроорганизмы (бактерии, микробы и др.) и низшие растения (водоросли, мхи, лишайники), выделяют различные кислоты и соли, которые, в свою очередь, весьма активно взаимодействуют с минералами горных пород, разрушают их, формируют минеральные новообразования.

Действие биологического выветривания повсеместно. Ему принадлежит ведущая роль в образовании почв.

Процессы выветривания влияют на инженерно-геологические свойства горных пород. Выветривание как геологический процесс приводит к разрушению и преобразованию первичных пород. С инженерно-геологической точки зрения основная направленность процесса выветривания состоит в изменении физического состояния и физико-механических свойств горных пород, что приводит к снижению устойчивости пород в основании сооружений, естественных и искусственных откосах, подземных выработках и т. д.

Физико-механические свойства коры выветривания зависят от степени выветрелости исходной породы, ее петрографо-минерального состава и структуры. Глубинные магматические породы, разрушаясь на поверхности земли, быстро теряют свою прочность и превращаются в так называемые рухляки, обладающие меньшей несущей способностью и большей деформативностью по сравнению даже с трещиноватой скалой. Рухляки кислых и средних магматических пород состоят в основном из кварца, одного из самых устойчивых минералов к процессам выветривания; рухляки основных и ультраосновных пород сложены из полевых шпатов — неустойчивых минералов, в коре выветривания превращающихся в глинистые продукты. Механические свойства этих рухляков ниже, чем рухляков кислых и средних пород.

При дальнейшем разрушении магматических пород образуются крупнообломочные элювиальные грунты, прочность и сжимаемость которых зависит от заполнителя и механической прочности самих обломков, т. е. от степени их выветрелости.

Крупнообломочные грунты элювия кислых пород, имея в качестве заполнителя песок, состоящий в основном из кварца и прочных обломков, обладают большей механической прочностью, чем подобные грунты коры выветривания основных и ультраосновных пород.

Характерной особенностью элювиальных глин является набухание, представляющее собой увеличение объема породы при увлажнении, и усадка — уменьшение объема при высыхании. Эти процессы значительно ухудшают условия эксплуатации зданий и сооружений.

Элювий метаморфических пород по своим физико-механическим показателям близок к коре выветривания основных и ульт-раосновных магматических пород.

Кора выветривания осадочных пород отличается своим своеобразием. Наибольшему разрушению подвергаются осадочные породы, образовавшиеся в условиях, отличных от тех, в которых действуют факторы выветривания. Породы химического и органогенного происхождения большей частью полностью растворяются в воде или быстро дробятся до частиц песчаных и глинистых размеров. В сцементированных породах в первую очередь разрушается природный цемент, песчаник снова превращается в песок, конгломерат — в гальку и гравий с песчаным или глинистым заполнителем (в зависимости от цемента).

Особый интерес представляет поведение глин в зоне выветривания. При выветривании глинистых пород происходит:

  • • раскрытие существующих и образование новых трещин;
  • • разрыхление, сопровождающееся возрастанием пористости;
  • • появление новых минералов.

Эти процессы резко ухудшают физико-механические свойства глинистых пород, у них снижается сопротивление сдвигу и повышается сжимаемость.

Степень выветрелости пород и строительных материалов оценивается коэффициентом выветрелости к„ — отношением плотности выветрелой к плотности невыветрелой породы (материала). Если к„— 1 — порода выветрелая, при к„ = 1 ...0,9 — слабовыветре-лая, 0,9...0,8— выветрелая и к„ < 0,8 — сильно выветрелая (рухляки).

В связи с вышесказанным видно, что процессы выветривания могут настолько изменить свойства пород и инженерно-геологические условия строительной площадки, что строить здания и сооружения без специальных мероприятий не представляется возможным.

Борьба с процессом выветривания. При выборе основания для зданий и сооружений кору выветривания прорезают фундаментом до невыветрелой породы, либо используют ее как несущее основание, если элювий имеет достаточную прочность или укреплен после соответствующей обработки способами технической мелиорации. Крутизну откосов выемок назначают с учетом прочности пород коры выветривания.

Процесс выветривания необходимо учитывать также на период эксплуатации зданий и сооружений. Порода и строительные материалы, не защищенные от агентов выветривания, постепенно будут разрушаться, снижая устойчивость и прочность зданий и сооружений.

Для предотвращения выветривания или улучшения свойств уже выветрелых пород применяют различные мероприятия:

  • • покрытие горных пород непроницаемыми для агентов выветривания материалами;
  • • пропитывание пород различными веществами;
  • • нейтрализацию агентов выветривания;
  • • планировку территорий и отвод вод.

Выбор мероприятий по борьбе с выветриванием зависит от степени выветрелости пород, характера выветрелости, конструктивных особенностей сооружения и т. д.

Создание защитных покрытий на поверхности горных пород с помощью различных материалов — гудрона, бетона, цементного раствора, глины — зависит от преобладающих факторов выветривания.

Например, гудрон, цемент, геосинтетики и другие искусственные покрытия предохраняют породы от проникновения воды, но не защищают от влияния колебания температур. Хорошим изолирующим материалом является глина. Уложенная слоем, мощность которого равна глубине проникновения суточных колебаний температур, она становится хорошим водонепроницаемым покрытием, а сама мало изменяется под воздействием выветривания. Широко применяют гидроизоляцию котлованов, если они должны находиться в открытом состоянии какое-то время. В ряде случаев дно котлованов специально не доводят до проектной отметки. Выветрившийся слой снимают непосредственно перед началом укладки фундамента.

Пропитывать породы можно жидким стеклом, гудроном, цементом. Жидкое стекло используют для укрепления песчаных и песчано-глинистых пород. Гудрон дает лучшие результаты в щебенистых отложениях. Цементом можно хорошо скреплять трещины в скальных породах. Пески можно пропитывать глинистой суспензией, что приводит к снижению водопроницаемости.

Нейтрализацию агентов выветривания из-за практических неудобств и дороговизны применяют сравнительно редко. Таким методом, например, является насыщение фильтрующейся воды солями, которые она может растворять в данной породе. Такая вода уже теряет способность растворять такие соли. Действие подземных вод можно нейтрализовать дренажами. Поверхностные воды отводят различного рода ливнестоками, нагорными канавами.

Строительные материалы и изделия необходимо изолировать от влияния агентов выветривания различными покрытиями — красками, лаками, штукатуркой, жидким стеклом, органическими пленками и т. д. В строительстве следует использовать породы наиболее устойчивые к выветриванию.

 
< Пред   СОДЕРЖАНИЕ     След >