Обследование бетонных и железобетонных конструкций

Оценка технического состояния конструкций по внешним признакам производится на основе определения следующих факторов:

  • • геометрических размеров конструкций и их сечений;
  • • наличия трещин, отколов и разрушений;
  • • состояния защитных покрытий (лакокрасочных, штукатурок, защитных экранов и др.);
  • • прогибов и деформаций конструкций;
  • • нарушения сцепления арматуры с бетоном;
  • • наличия разрыва арматуры;
  • • состояния анкеровки продольной и поперечной арматуры;
  • • степени коррозии бетона и арматуры.

При определении геометрических параметров конструкций и их сечений фиксируются все отклонения от их проектного положения. Определение ширины и глубины раскрытия трещин следует выполнять по рекомендациям, указанным выше.

Ширину раскрытия трещин рекомендуется измерять в первую очередь в местах максимального их раскрытия и на уровне растянутой зоны элемента. Степень раскрытия трещин сопоставляется с нормативными требованиями по предельным состояниям второй группы в зависимости от вида и условий работы конструкций. Следует различать трещины, появление которых вызвано напряжениями, проявившимися в железобетонных конструкциях в процессе изготовления, транспортировки и монтажа, и трещины, обусловленные эксплуатационными нагрузками и воздействием окружающей среды.

К трещинам, появившимся в период до эксплуатации объекта, относятся: технологические, усадочные, вызванные быстрым высыханием поверхностного слоя бетона и сокращением объема, а также трещины от набухания бетона; вызванные неравномерным охлаждением бетона; трещины, возникшие в сборных железобетонных элементах в процессе складирования, транспортировки и монтажа, при которых конструкции подвергались силовым воздействиям от собственного веса по схемам, не предусмотренным проектом.

К трещинам, появившимся в эксплуатационной период, относятся: трещины, возникшие в результате температурных деформаций из-за нарушений требований устройства температурных швов; вызванные неравномерностью осадок фунтового основания, что может быть связано с нарушением требований устройства осадочных деформационных швов, проведением земляных работ в непосредственной близости от фундаментов без обеспечения специальных мер; обусловленные силовыми воздействиями, превышающими несущую способность железобетонных элементов.

Трещины силового характера необходимо рассматривать с точки зрения напряженно-деформированного состояния железобетонной конструкции.

В железобетонных конструкциях наиболее часто встречаются следующие виды трещин:

  • а) в изгибаемых элементах, работающих по балочной схеме (балки, прогоны), возникают трещины, перпендикулярные (нормальные) продольной оси, вследствие появления растягивающих напряжений в зоне действия максимальных изгибающих моментов, наклонные к продольной оси, вызванные главными растягивающими напряжениями в зоне действия перерезывающих сил и изгибающих моментов (рис. 2.32).
  • 1
Характерные трещины в изгибаемых железобетонных элементах

Рис. 2.32. Характерные трещины в изгибаемых железобетонных элементах,

работающих по балочной схеме

  • 1 — нормальные трещины в зоне максимального изгибающего момента;
  • 2 — наклонные трещины в зоне максимально поперечной силы;
  • 3 — трещины и раздробление бетона в сжатой зоне.

Нормальные трещины имеют максимальную ширину раскрытия в крайних растянутых волокнах сечения элемента. Наклонные трещины начинают раскрываться в средней части боковых граней элемента — в зоне действия максимальных касательных напряжений, а затем развиваются в сторону растянутой грани.

Образование наклонных трещин на опорных концах балок и прогонов обусловлено их недостаточной несущей способностью по наклонным сечениям.

Вертикальные и наклонные трещины в пролетных участках балок и прогонов свидетельствуют о недостаточной их несущей способности по изгибающему моменту.

Раздробление бетона сжатой зоны сечений изгибаемых элементов указывает на исчерпание несущей способности конструкции;

б) в плитах могут возникать трещины:

в средней части плиты, имеющие направление поперек рабочего пролета с максимальным раскрытием на нижней поверхности плиты;

на опорных участках, имеющие направление поперек рабочего пролета с максимальным раскрытием на верхней поверхности плиты;

радиальные и концевые, с возможным отпаданием защитного слоя и разрушением бетона плиты;

вдоль арматуры по нижней плоскости стены.

Трещины на опорных участках плит поперек рабочего пролета свидетельствуют о недостаточной несущей способности по изгибающему опорному моменту.

Характерно развитие трещин силового происхождения на нижней поверхности плит с различным соотношением сторон (рис. 2.33). При этом бетон сжатой зоны может быть не нарушен. Смятие бетона сжатой зоны указывает на опасность полного разрушения плиты;

б

в

Характерные трещины на нижней поверхности плит

Рис. 2.33. Характерные трещины на нижней поверхности плит: а — работающих по балочной схеме при /2//, > 3; б — опертых по контуру при /2//, < 3; в — то же, при /2//, = 1; г — опертых по трем сторонам при /3//, < 1,5; то же, при /2//, > 1,5

в) в колоннах образуются вертикальные трещины на гранях колонн и горизонтальные трещины.

Вертикальные трещины на гранях колонн могут появляться в результате чрезмерного изгиба стержней арматуры. Такое явление может возникнуть в тех колоннах и их зонах, где редко поставлены хомуты (рис. 2.34).

3 с

г

Трещины вдоль продольной арматуры в сжатых элементах

Рис. 2.34. Трещины вдоль продольной арматуры в сжатых элементах

Горизонтальные трещины в железобетонных колоннах не представляют непосредственной опасности, если ширина их невелика, однако через такие трещины могут в арматуру попасть увлажненный воздух и агрессивные реагенты, вызывая коррозию металла,

Появление продольных трещин вдоль арматуры в сжатых элементах свидетельствует о разрушениях, связанных с потерей устойчивости (выпучиванием) продольной сжатой арматуры из-за недостаточного количества поперечной арматуры;

  • г) появление в изгибаемых элементах поперечной, перпендикулярной продольной оси элемента, трещины, проходящей через все сечение (рис. 2.35), может быть связано с воздействием дополнительного изгибающего момента в горизонтальной плоскости, перпендикулярной плоскости действия основного изгибающего момента (например, от горизонтальных сил, возникающих в подкрановых балках). Такой же характер имеют трещины в растянутых железобетонных элементах, но при этом трещины просматриваются на всех гранях элемента, опоясывают его;
  • д) трещины на опорных участках и торцах железобетонных конструкций.

Обнаруженные трещины у торцов предварительно напряженных элементов, ориентированные вдоль арматуры, указывают на нарушение анкеровки арматуры. Об этом же свидетельствуют и наклонные трещины в приопорных участках, пересекающие зону расположения предварительно напряженной арматуры и распространяющиеся на нижнюю грань края опоры (рис. 2.36);

е) элементы решетки раскосных железобетонных ферм могут испытывать сжатие, растяжение, а в опорных узлах — действие

перерезывающих сил. Характерные повреж-

Трещины в опорной части предварительно напряженного элемента

Рис. 2.36. Трещины в опорной части предварительно напряженного элемента:

  • 1 — при нарушении анкеровки напряженной арматуры;
  • 2 — при

недостаточности

косвенного

армирования

Трещины по всей высоте сечений элементов, изгибаемых в двух

Рис. 2.35. Трещины по всей высоте сечений элементов, изгибаемых в двух

плоскостях

дения при разрушении отдельных участков таких ферм приведены на рис. 2.37. В опорном узле могут возникнуть помимо трещин, 2 (рис. 2.38) повреждения типа 1, 2, 4. Появление горизонтальных трещин в нижнем преднапряженном поясе типа 4 (см. рис. 2.37) свидетельствует об отсутствии или недостаточности поперечного армирования в обжатом бетоне. Нормальные (перпендикулярные к продольной оси) трещины типа 5 появляются в растянутых стержнях при необеспеченности трещиностойкости элементов. Появление повреждений в виде лещадок типа 2 свидетельствует об исчерпании прочности бетона на отдельных участках сжатого пояса или на опоре.

Характерные повреждения в железобетонных фермах с нижним

Рис. 2.37. Характерные повреждения в железобетонных фермах с нижним

предварительно напряженным поясом:

1 — наклонная трещина у опорного узла; 2 — откол лещадок; 3 — лучеобразные и вертикальные трещины; 4 — горизонтальная трещина; 5 — вертикальные (нормальные) трещины в растянутых элементах; 6 — наклонные трещины в сжатом поясе фермы; 7 — трещины в узле нижнего пояса

Дефекты в виде трещин и отслоения бетона вдоль арматуры железобетонных элементов могут быть вызваны и коррозионным разрушением арматуры. В этих случаях происходит нарушение сцепления продольной и поперечной арматуры с бетоном. Нарушение сцепления арматуры с бетоном из-за коррозии можно

Места отбора заготовок из элементов ферм

Рис. 2.38. Места отбора заготовок из элементов ферм

установить простукиванием поверхности бетона (при этом прослушиваются пустоты).

Продольные трещины вдоль арматуры с нарушением сцепления ее с бетоном могут быть вызваны и температурными напряжениями при эксплуатации конструкций с систематическим нагревом свыше 300°С или последствиях пожара.

В изгибаемых элементах, как правило, к появлению трещин приводит увеличение прогибов и углов поворота. Недопустимыми (аварийными) можно считать прогибы изгибаемых элементов более 1/50 пролета при ширине раскрытия трещин в растянутой зоне более 0,5 мм. Значения предельно допустимых прогибов для железобетонных конструкций приведены в табл. 2.10.

Определение и оценку состояния покрытий железобетонных конструкций следует производить по методике, изложенной в ГОСТ 6992—68. При этом фиксируются следующие основные виды повреждений: растрескивания и отслоения, которые характеризуются глубиной разрушения верхнего слоя (до грунтовки), пузыри и коррозионные очаги, характеризуемые размером очага (диаметром), мм. Площадь отдельных видов повреждений покрытия выражают ориентировочно в процентах по отношению ко всей окрашенной поверхности конструкции (элемента).

Эффективность защитных покрытий при воздействии на них агрессивной среды определяется по состоянию бетона конструкций после удаления защитных покрытий.

В процессе визуальных обследований производится ориентировочная оценка прочности бетона. Метод основан на простукивании поверхности конструкции молотком массой 0,4—0,8 кг непосредственно по очищенному растворному участку бетона или по зубилу, установленному перпендикулярно поверхности элемента. Более звонкий звук при простукивании соответствует более прочному и плотному бетону. Дня получения достоверных данных о прочности бетона следует применять методы и приборы, приведенные в разделе о контроле прочности.

При наличии увлажненных участков и поверхностных высо-лов на бетоне конструкций определяют величину этих участков и причину их появления. Результаты визуального осмотра железобетонных конструкций фиксируют в виде карты дефектов, нанесенных на схематические планы или разрезы здания, или составляют таблицы дефектов с рекомендациями по классифи-

ЗНАЧЕНИЕ ПРЕДЕЛЬНО ДОПУСТИМЫХ ПРОГИБОВ ЖЕЛЕЗОБЕТОННЫХ

КОНСТРУКЦИЙ

Таблица 2.10

Элементы конструкций

Предельно допустимые прогибы

Подкрановые балки при кранах: ручных

электрических

  • 1/500
  • 1/600

Перекрытия с плоским потолком и элементы покрытия (кроме указанных в поз.4), при пролетах, м:

I < 6

6 = I = 7,5

I > 7,5

  • 1/200
  • 3 см
  • 1/250

Перекрытия с ребристым потолком и элементы лестниц при пролетах, м:

I < 5

5 = 1 = 10

I > 10

  • 1/200
  • 2,5 см
  • 1/400

Элементы покрытий сельскохозяйственных зданий производственного назначения при пролетах, м:

I < 6

6 = 1 = 10

I > 10

  • 1/150
  • 4 см

I/250

Навесные стеновые панели (при расчете из плоскости) при пролетах, м:

I < 6

6 = I = 7,5

I > 7,5

I/200

3 см

I/250

Примечание. При действии постоянных, длительных и кратковременных нагрузок прогиб балок и плит не должен превышать 1/150 пролета и I/75 вылета консоли.

кации дефектов и повреждений с оценкой категории состояния конструкций.

Для оценки характера коррозионного процесса и степени воздействия агрессивных сред, различают три основных вида коррозии бетона.

К I виду относятся все процессы коррозии, которые возникают в бетоне при действии жидких сред (водных растворов), способных растворять компоненты цементного камня. Составные части цементного камня растворяются и выносятся из цементного камня.

Ко II виду коррозии относятся процессы, при которых происходят химические взаимодействия — обменные реакции — между цементным камнем и раствором, в том числе обмен катионами. Образующиеся продукты реакции или легкорастворимы и выносятся из структуры в результате диффузии или фильтрационным потоком, или отлагаются в виде аморфной массы, не обладающей вяжущими свойствами и не влияющей на дальнейший разрушительный процесс.

Такой вид коррозии представляют процессы, возникающие при действии на бетон растворов кислот и некоторых солей.

К III виду коррозии относятся все те процессы коррозии бетона, в результате которых продукты реакции накапливаются и кристаллизуются в порах и капиллярах бетона. На определенной стадии развития этих процессов рост кристаллообразований вызывает возникновение растущих по величине напряжений и деформаций в ограждающих стенках, а затем приводит к разрушению структуры. К этому виду могут быть отнесены процессы коррозии при действии сульфатов, связанные с накоплением и ростом кристаллов гидросульфоалюминита, гипса и др. Разрушение бетона в конструкциях при их эксплуатации происходит под воздействием многих химических и физико-механических факторов. К ним относятся неоднородность бетона, повышенные напряжения в материале различного происхождения, приводящие к микроразрывам в материале, попеременное увлажнение и высушивание, периодические замораживания и оттаивания, резкие перепады температур, воздействие солей и кислот, выщелачивание, нарушение контактов между цементным камнем и заполнителями, коррозия стальной арматуры, разрушение заполнителей под воздействием щелочей цемента.

Сложность изучения процессов и факторов, обуславливающих разрушения бетона и железобетона, объясняется тем, что в зависимости от условий эксплуатации и срока службы конструкций одновременно действует много факторов, приводящих к изменениям структуры и свойств материалов. Для большинства конструкций, соприкасающихся с воздухом, карбонизация является характерным процессом, который ослабляет защитные свойства бетона. Карбонизацию бетона может вызвать не только углекислый газ, имеющийся в воздухе, но и другие кислые газы, содержащиеся в промышленной атмосфере. В процессе карбонизации углекислый газ воздуха проникает в поры и капилляры бетона, растворяется в поровой жидкости и реагирует с гидроалюминатом окиси кальция, образуя слаборастворимый карбонат кальция. Карбонизация снижает щелочность содержащейся в бетоне влаги, что приводит к снижению так называемого пассивирующего (защитного) действия щелочных сред и коррозии арматуры в бетоне.

Для определения степени коррозионного разрушения бетона (степени карбонизации, состава новообразований, структурных нарушений бетона) используются физико-химические методы.

Исследование химического состава новообразований, возникших в бетоне под действием агрессивной среды, производится с помощью дифференциально-термического и рентгено-структурного методов, выполняемых в лабораторных условиях на образцах, отобранных из эксплуатируемых конструкций. Изучение структурных изменений бетона производится с помощью ручной лупы, дающей небольшое увеличение. Такой осмотр позволяет изучить поверхность образца, выявить наличие крупных пор, трещин и других дефектов.

С помощью микроскопического метода можно выявить взаимное расположение и характер сцепления цементного камня и зерен заполнителя; состояние контакта между бетоном и арматурой; форму, размер и количество пор; размер и направление трещин.

Определение глубины карбонизации бетона производят по изменению величины водородного показателя pH.

В случае если бетон сухой, смачивают поверхность скола чистой водой, которой должно быть столько, чтобы на поверхности бетона не образовалась видимая пленка влаги. Избыток воды удаляют чистой фильтровальной бумагой. Влажный и воздушно-сухой бетон увлажнения не требует.

На скол бетона с помощью капельницы или пипетки наносят 0,1 %-ый раствор фенолфталеина в этиловом спирте. При изменении pH от 8,3 до 14 окраска индикатора изменяется от бесцветной до ярко-малиновой. Свежий излом образца бетона в карбонизированной зоне после нанесения на него раствора фенолфталеина имеет серый цвет, а в некарбонизированной зоне приобретает ярко-малиновую окраску.

Примерно через минуту после нанесения индикатора измеряют линейкой с точностью до 0,5 мм расстояние от поверхности образца до границы ярко окрашенной зоны в направлении, нормальном к поверхности. Измеренная величина есть глубина карбонизации бетона. В бетонах с равномерной структурой пор граница ярко окрашенной зоны расположена обычно параллельно наружной поверхности. В бетонах с неравномерной структурой пор граница карбонизации может быть извилистой. В этом случае необходимо измерять максимальную и среднюю глубину карбонизации бетона. Факторы, влияющие на развитие коррозии бетонных и железобетонных конструкций, делятся на две группы: связанные со свойствами внешней среды — атмосферных и грунтовых вод, производственной среды и т.п., и обусловленные свойствами материалов (цемента, заполнителей, воды и т.п.) конструкций.

Для эксплуатируемых конструкций трудно определить, сколько и каких химических элементов осталось в поверхностном слое, и способны ли они дальше продолжать свое разрушающее действие. Оценивая опасность коррозии бетонных и железобетонных конструкций, необходимо знать характеристики бетона: его плотность, пористость количество пустот и др.

Процессы коррозии железобетонных конструкций и методы защиты от нее сложны и разнообразны. Разрушение арматуры в бетоне обусловлено потерей защитных свойств бетона и доступом к ней влаги, кислорода воздуха или кислотообразующих газов. Коррозия арматуры в бетоне является электрохимическим процессом. Поскольку арматурная сталь неоднородна по структуре, как и контактирующая с ней среда, создаются все условия для протекания электрохимической коррозии.

Коррозия арматуры в бетоне возникает при уменьшении щелочности окружающего арматуру электролита до pH, равного или меньше 12, при карбонизации или коррозии бетона.

При оценке технического состояния арматуры и закладных деталей, пораженных коррозией, прежде всего необходимо установить вид коррозии и участки поражения. После определения вида коррозии необходимо установить источники воздействия и причины коррозии арматуры. Толщина продуктов коррозии определяется микрометром или с помощью приборов, которыми замеряют толщину немагнитных противокоррозионных покрытий на стали (например, ИТП-1, МТ-ЗОН и др.).

Для арматуры периодического профиля следует отмечать остаточную выраженность рифов после зачистки.

В местах, где продукты коррозии стали хорошо сохраняться, можно по их толщине ориентировочно судить о глубине коррозии по соотношению

8* = °.68,.

где 8а. — средняя глубина сплошной равномерной коррозии стали; — толщина продуктов коррозии.

Выявление состояния арматуры элементов железобетонных конструкций производится путем удаления защитного слоя бетона с обнажением рабочей и монтажной арматуры.

Обнажение арматуры производится в местах наибольшего ее ослабления коррозией, которые выявляются по отслоению защитного слоя бетона и образованию трещин и пятен ржавой окраски, расположенных вдоль стержней арматуры. Диаметр арматуры измеряется штангенциркулем или микрометром. В местах, где арматура подвергалась интенсивной коррозии, вызвавшей отпадание защитного слоя, производится тщательная зачистка ее от ржавчины до появления металлического блеска.

Степень коррозии арматуры оценивается по следующим признакам: характеру коррозии, цвету, плотности продуктов коррозии, площади пораженной поверхности, площади поперечного сечения арматуры, глубине коррозионных поражений.

При сплошной равномерной коррозии глубину коррозионных поражений определяют измерением толщины слоя ржавчины, при язвенной — измерением глубины отдельных язв. В первом случае острым ножом отделяют пленку ржавчины и толщину ее измеряют штангенциркулем. При этом принимается, что глубина коррозии равна либо половине толщины слоя ржавчины, либо половине разности проектного и действительного диаметров арматуры.

При язвенной коррозии рекомендуется вырезать куски арматуры, ржавчину удалить травлением (погружая арматуру в 10 %-ный раствор соляной кислоты, содержащий 1 % ингибитора-уротро-пина) с последующей промывкой водой. Затем арматуру необходимо погрузить на 5 мин в насыщенный раствор нитрата натрия, вынуть и протереть. Глубину язв измеряют индикатором с иглой, укрепленной на штативе.

Глубину коррозии определяют по показанию стрелки индикатора как разность показания у края и дна коррозионной язвы. При выявлении участков конструкций с повышенным коррозионным износом, связанным с местным (сосредоточенным) воздействием агрессивных факторов, рекомендуется в первую очередь обращать внимание на следующие элементы и узлы конструкций:

  • • опорные узлы стропильных и подстропильных ферм, вблизи которых расположены водоприемные воронки внутреннего водостока;
  • • верхние пояса ферм в узлах присоединения к ним аэрационных фонарей, стоек ветроотбойных щитов;
  • • верхние пояса подстропильных ферм, вдоль которых расположены ендовы кровель;
  • • опорные узлы ферм, находящиеся внутри кирпичных стен;
  • • верхние части колонн, находящиеся внутри кирпичных стен;
  • • низ и базы колонн, расположенные на уровне или ниже уровня пола, в особенности при мокрой уборке в помещении (гидросмыве);
  • • участки колонн многоэтажных зданий, проходящие через перекрытие, в особенности при мокрой уборке пыли в помещении;
  • • участки плит покрытия, расположенные вдоль ендов, у воронок внутреннего водостока, у наружного остекления и торцов фонарей, у торцов здания.
 
< Пред   СОДЕРЖАНИЕ     След >