Меню
Главная
Авторизация/Регистрация
 
Главная arrow Психология arrow Психофизиология: общая, возрастная, дифференциальная, клиническая

Психофизиологические аспекты принятия решения

Проблема принятия решения относится к числу междисциплинарных. К ней обращаются кибернетика, теория управления, инженерная психология, социология и другие дисциплины, поэтому сущего ствуют разные и иногда трудно сопоставимые подходы к ее изучению. В то же время принятие решения — кульминационная и иногда завершающая операция мыслительной деятельности человека. Закономерно, что психофизиологическое обеспечение этой стадии процесса мышления является предметом специального анализа.

В психофизиологии и нейрофизиологии эта проблема имеет свою историю изучения. Теория функциональных систем и информационная парадигма (см. гл. 1) широко оперируют этим понятием. Имеется также немало эмпирических исследований, посвященных изучению физиологических коррелятов и механизмов феномена принятия решения.

Принятие решения в теории функциональных систем. По утверждению П.К. Анохина (1976), необходимость ввести понятие «принятие решения» возникла в процессе разработки теории ФС для четкого обозначения этапа, на котором заканчивается формирование и начинается исполнение какого-либо поведенческого акта. Таким образом, принятие решения в ФС является одним из этапов в развитии целенаправленного поведения. Оно всегда сопряжено с выбором, поскольку на стадии афферентного синтеза происходит сличение и анализ информации, поступающей из разных источников. Принятие решения представляет собой критический пункт, в котором происходит организация комплекса эфферентных возбуждений, порождающих в дальнейшем определенное действие.

Обращаясь к физиологическим механизмам принятия решения, П.К. Анохин подчеркивал, что принятие решения — процесс, включающий разные уровни организации: от отдельного нейрона, который продуцирует свой ответ в результате суммации многих влияний, до системы в целом, интегрирующей влияния множества нейрональных объединений. Окончательный результат этого процесса выражается в утверждении: система приняла решение.

Уровни принятия решения. Значение принятия решения в поведении и мыслительной деятельности очевидно. Однако описание этого процесса с позиций системного подхода, как это часто бывает, носит слишком общий характер. Принятие решение как объект психофизиологического исследования должно иметь конкретное содержание и быть доступно для изучения с помощью экспериментальных методов.

Нейрофизиологические механизмы принятия решения должны существенно различаться в зависимости от того, в контекст какой деятельности они включены. В сенсорных и двигательных системах при каждом перцептивном или двигательном акте происходит разнообразный и многосторонний выбор возможного ответа, который осуществляется на бессознательном уровне.

Принципиально иные нейрофизиологические механизмы имеют истинные процессы принятия решения, которые выступают как звено сознательной произвольной деятельности человека (Лурия, Хомская, 1976, цит. по: Проблемы принятия решения, 1976). Будучи обязательным звеном в обеспечении всех видов познавательной деятельности, процесс принятия решения в каждом из них имеет свою специфику. Перцептивное решение отличается от мнестического или решения мыслительной задачи, и что самое существенное, мозговое обеспечение этих решений включает разные звенья и строится на различных уровнях.

В психофизиологии наиболее разработаны представления о коррелятах и механизмах принятия решения, включенного в процессы переработки информации и организацию поведенческого акта.

Вызванные потенциалы и принятие решения. Продуктивным методом исследования физиологических основ принятия решения является метод регистрации вызванных или событийно-связанных потенциалов (ВП и ССП). ССП — это реакции разных зон коры на внешнее событие, сопоставимые по длительности с реальным психологическим процессом переработки информации (см. п. 5.3) или поведенческим актом. В составе этих реакций можно выделять компоненты двух типов: ранние специфические (экзогенные) и поздние неспецифические (эндогенные) компоненты. Экзогенные компоненты связаны с первичной обработкой, а эндогенные отражают этапы более сложной обработки стимула: формирование образа, сличение его с эталонами памяти, принятие перцептивного решения.

Обширный массив экспериментальных исследований связан с изучением наиболее известного информационного эндогенного колебания волны Р300, позднего позитивного колебания, регистрируемого в интервале 300—600 мс. Многочисленные факты свидетельствуют, что волна Р300 может рассматриваться как психофизиологический коррелят таких когнитивных процессов, как ожидание, обучение, рассогласование, снятие неопределенности и принятие решения. Функциональное значение волны Р300 широко обсуждается во многих исследованиях, при этом обнаруживается целый ряд различных подходов к его интерпретации. В качестве примера приведем некоторые из них.

В контексте теории функциональных систем возникновение волны Р300 характеризует смену действующих ФС, переход от одного крупного этапа поведения к другому. Волна Р300 при этом отражает перестройку текущего содержания психики, а ее амплитуда — масштаб реорганизаций, происходящих в той или иной области мозга.

С позиций информационного подхода функциональное значение Р300 рассматривается как результат когнитивного завершения. По этой логике процесс восприятия состоит из отдельных дискретных временных единиц перцептивных эпох. Внутри каждой эпохи осуществляется анализ ситуации и складывается ожидание события, которое должно завершить эпоху. Завершение эпохи выражается в виде появления волны Р300, преобладающей в теменной области. При этом предполагается, что отдельные компоненты ВП отражают чередование подъемов и спадов активации структур, ответственных за реализацию когнитивной деятельности, а волна Р300 обусловлена снижением уровня активации в третичных зонах коры, ответственных за когнитивное завершение перцептивного акта и принятие решения.

По другим представлениям волна Р300 представляет собой проявление особой категории метаконтрольных процессов, которые связаны с планированием и контролем поведения в целом, установлением долговременных приоритетов в поведении, определением вероятностных изменений окружающей среды (ЭопсЫп е! а1., 1988).

Большой объем эмпирических исследований связывает параметры компонента Р300 с патологическими изменениями в сфере неврологии и психиатрии, в том числе с когнитивными нарушениями (Алешина с соавт., 2009).

Детектор ошибок. В исследованиях Н.П. Бехтеревой с сотрудниками (1999) было показано, что в мозге имеются нейронные популяции, реагирующие только на ошибочную реализацию деятельности. Другими словами, эти ансамбли нейронов активируются не при выполнении какой-либо конкретной деятельности как таковой, а реагируют только на ее ошибочное выполнение.

Подобные группы нейронов были обнаружены первоначально в подкорке, а затем и в коре больших полушарий. Эти группы нейронов были названы детекторами ошибок. Детектор ошибок всегда активируется при рассогласовании деятельности с ее планом, точнее, с имеющейся в мозге моделью деятельности.

С точки зрения Н.П. Бехтеревой, аппарат сравнения, осуществляющий распознавание ошибок, относится к числу базисных механизмов мозга, повышающих надежность его работы. Представления о детекторе ошибок хорошо согласуются с теорией нервной модели стимула Е.Н. Соколова (см. п. 6.1) и теорией функциональных систем П.К. Анохина (см. п. 1.4).

Хронометрия мыслительной деятельности. Психофизиологическая хронометрия — направление, исследующее временные параметры (начало, продолжительность, скорость) когнитивных операций с помощью физиологических методов. Наибольшее значение здесь имеют амплитудно-временные характеристики компонентов ВП и ССП.

Объектом изучения являются как экзогенные, так и эндогенные компоненты, отражающие различные стадии процесса переработки информации. Временные параметры первых позволяют судить о времени, которое требуется для сенсорного анализа. Временные параметры эндогенных компонентов дают представление о длительности этапов обработки, связанных с операциями формирования образа, сличения его с эталонами памяти и принятия решения.

Анализ амплитудно-временных параметров этих компонентов в разных ситуациях позволяет установить круг психологических переменных, от которых зависит как скорость переработки информации в целом, так и длительность отдельных стадий этого процесса. Удалось, например, показать, что латентный период Р300 прямо связан с информационной спецификой стимула и обратно пропорционален сложности экспериментальной задачи. При этом амплитуда компонента Р300 тем больше, чем сложнее сам стимул в экспериментальной задаче и чем больше когнитивных операций требует от испытуемого ситуация эксперимента.

Таким образом, параметры ВП и ССП все чаще используются как инструмент микроструктурного анализа, позволяющий выделить временные характеристики определенных стадий внутренней организации поведенческого акта, недоступные внешнему наблюдению.

Жесткие и гибкие звенья. Для характеристики свойств мозгового субстрата мыслительной деятельности Н.П. Бехтеревой (1966) был предложен принцип индивидуально формирующихся мозговых систем, согласно которому реализация одной и той же психической деятельности может обеспечиваться топографически различающимися мозговыми системами. Это означает, что нейрофизиологические механизмы, обеспечивающие мыслительную деятельность человека, представляют собой системы, состоящие из жестких (стабильных) и «гибких» (вариативных) звеньев.

В дальнейшем эти представления получили подтверждение в исследованиях Н.П. Бехтеревой и ее сотрудников при помощи ПЭТ-томографии. Было показано, что в решении одной и той же мыслительной задачи принимают участие как постоянно активирующиеся участки головного мозга (жесткие звенья), так и новые области мозга, названные гибкими звеньями.

Иными словами, мозговая система обеспечения мышления состоит из жестких (одних и тех же) и гибких (вариативных) звеньев. Этот принцип организации мозговых систем является одним из важнейших механизмов надежности мозга, который обеспечивает возможность достижения правильного конечного результата мыслительной деятельности относительно независимо от внутренних и внешних помех.

Соотношение нейронного и топографического уровней. Мышление как психический процесс и интеллект как интегральная когнитивная характеристика функционируют на основе свойств мозга, взятого как целое. С позиций системного подхода (см. п. 1.4.5) в работе мозга следует выделять два уровня, или типа, систем: микро- и макро-системный.

Применительно к мышлению и интеллекту первый представлен параметрами функционирования нейронов (принципами кодирования информации в нейронных сетях) и особенностями распространения нервных импульсов (скоростью и точностью передачи информации). Второй отражает морфофункциональные особенности и значение отдельных структур мозга, а также их пространственно-временную организацию (хронотоп) в обеспечении эффективной умственной деятельности. Изучение этих факторов позволяет выявить, что головной мозг, и в первую очередь зоны коры, в процессе мыслительной деятельности действуют как единая система с очень гибкой и подвижной внутренней структурой, которая адекватна специфике задачи и способам ее решения.

Целостная картина мозговых механизмов, лежащих в основе умственной деятельности и интеллекта, возможна на пути интеграции представлений, сложившихся на каждом из уровней. В этом и заключается перспектива психофизиологических исследований мыслительной деятельности человека.

 
< Пред   СОДЕРЖАНИЕ     След >
 

Популярные страницы