СОРБЦИОННЫЕ МЕТОДЫ

Из физико-химических методов наиболее часто используется очистка с помощью адсорбентов органической и неорганической природы. Твердые сорбенты растительного происхождения - это опилки. Для повышения качественных характеристик древесных опилок их пропитывают расплавом. Для сорбции нефти и нефтепродуктов могут применяться такие вещества, как торф, торфяной мох, бурый уголь, кокс, рисовая шелуха, кукурузная лузга, древесные опилки, диатомовая земля, солома, сено, песок, резиновая крошка, активированный уголь, перлит, пемза, лигнин, тальк, снег (лед), меловой порошок, отходы текстильной промышленности, вермикулит, изопреновый каучук и некоторые другие материалы (табл. 5.3).

Существуют различные способы очистки загрязненного нефтепродуктами грунта с использованием сорбционных материалов. Например, если в качестве адсорбента используют гидрофобизованные отработавшем техническим маслом опилки, то методика очистки заключается в смешивании их с загрязненной нефтью почвой, заливке смеси водой и перемешивании. После того как загрязненные опилки всплывут, их удаляют с поверхности воды. При таком методе очистка грунта достигает 97-98 %. Для сбора пролитого масла или маслообразных продуктов можно использовать рыхлую или крупчатую снежную массу. Пролитое масло покрывают слоем снега высотой 2-3 см, слегка его утрамбовывают, чтобы улучшить контакт с маслом, дают снежной массе некоторое время для пропитки маслом, после чего ее перемешивают. Обработку масляного пятна ведут до тех пор, пока большая часть снежной массы им не пропитается, после чего собирают в отдельную емкость, нагревают и отделяют выделившееся масло.

Главным свойством сорбента, применяемого для очистки нефтезагрязненных объектов, является его гидрофобность. Такое свойство присуще, например, древесному углю и пиролитическим отходам целлюлозно-бумажной промышленности. При пиролизе отходов древесины на лесокомбинате «Балыклес» г. Нефтеюганска производят продукт «Илокор» с хорошими сорбционными свойствами в отношении углеводородов нефти. Он представляет собой полидисперсный порошок с размерами частиц 0,3—0,7 мм с сорбционной емкостью 8,0 —8,8 г нефти на 1 г сорбента. На основе данного препарата получены две его модификации: «Эколан» и «Илокор-био». Эти сорбенты обладают не только хорошими сорбционными свойствами, их применение способствует быстрому вое-

становлению любого типа нефтезагрязненных почв. Так, при внесении в почву, загрязненную нефтью 50 л/м2, препарата «Эколан» из расчета 20 кг/м" происходило практически полное восстановление почвенного плодородия. Для восстановления выщелоченных черноземов потребовалось 3-4 мес., а для серых лесостепных почв - 7-8 лет. При внесении в загрязненную почву препарата «Эколан» резко снижается токсичность почвы, вследствие эффективной сорбции легких фракций нефти.

Таблица 5.3

Сорбционные материалы для сбора нефти и нефтепродуктов

Сорбент

Природа сорбента

Весовое соотношение

сорбента и загрязнителя

Торф гранулированный

Органическое вещество естественного происхождения

1:(1,3-1,7)

Торф воздушно-сухой

То же

1:4

Торф (влажный)

То же

1:0,7

Сибсорбент-2

Специально обработанный

торф

1:9,6

Солома

То же

1:(8-30)

Целлюлоза фирмы

«СопсеЬ>

То же

1:(10-15)

Соцветия тростника

То же

1:(11:30)

Мох влажный

То же

1:2

Г ранулы полиуретанового пенопласта

Органическое вещество искусственного происхождения

1:20

Изопреновый каучук

Органическое вещество органического происхождения

1:17

Карбамидный полимер

То же

1:60

Резиновая крошка

Композиционный материал,

включающий материал органической и неорганической природы

1:(5-6)

Диатомовая земля

Неорганическое вещество

естественного происхождения

1:(1-3)

Перлит

Неорганическое вещество, прошедшее специальную подготовку

1: (0,5-0,7)

Базальтовое волокно

Неорганическое вещество

естественного происхождения

1:(50-60)

Древесный уголь

Неорганическое вещество,

полученное при сжигании древесины

1 *(3-4)

Суперсорбент

Модифицированный пенополиуретан

1:53

С-верад

Модифицированный природный слоистый алюмосиликат

1:1,9

«Иликор»

Органическое вещество естественного происхождения, прошедшее специальную обработку

1:(8,0-8,8)

Аэрофонтанное волокно

То же

1:(4-5)

Дешевый и экологически чистый препарат "Эконафт" был разработан фирмой "Инсгво". Расход этого вещества для обезвреживания нефгемас-лоотходов составляет 0,3-1,0 т на 1 т отходов в зависимости от степени загрязнения. После смешения препарата с загрязненной землей или другими нефтемаслоотходами процесс адсорбции завершается через ЗСМ10 мин. При этом утилизируемый материал приобретает вид гранул, прочный наружный слой которых герметизирует адсорбированные жидкие загрязнения и изолирует их тем самым от земли. Полученные гранулы не смачиваются водой, морозоустойчивы и стойки при хранении. Смешанные с землей гранулы могут быть использованы в качестве наполнителя в производстве строительных и дорожных материалов.

Для изготовления различных сорбентов широко используются материалы растительного происхождения. Американская фирма "СопуееГ производит армированный пластмассовой сеткой материал растительного происхождения, основой которого служит целлюлоза. Этот материал способен адсорбировать 10-15-кратное количество сырой нефти. Для удаления нефтепродуктов с водной поверхности применяют соцветия тростника. Их сорбционная способность - от 11 до 30 г нефти на 1 г тростниковых соцветий. В Англии разработан гидрофобный сорбент на основе специально обработанного древесного волокна, который выпускается в виде матов.

Оригинальный материал изготавливают из отходов целлюлозно-бумажной промышленности. В качестве сорбента предлагается использовать подвергнутое аэрофонтанной сушке волокно, представляющее собой объемную массу, состоящую из мельчайших волокон жгутовой свивки. Волокно получают путем переработки осадка сточных вод целлюлозно-бумажной промышленности. С этой целью частично их обезвоженный осадок измельчают и высушивают в фонтанной струе горячего (120-140 °С) воздуха до влажности 3-4 %. Коэффициент поглощения нефтепродуктов таким волокном составляет 4-5. Благодаря горячей обработке и присутствию каолина в составе сорбента жгутики волокна приобретают структурную стабильность и упругость, что позволяет легко распылять его по нефтезагрязненной поверхности, а наличие смолы придаст волокну гидрофобность и плавучесть. Сорбент распыляют по загрязненной поверхности почвы или водоема. Адсорбция нефтепродуктов происходит в течение 30-60 с. Пропитанное нефтью волокно легко собирается любым механическим способом, прессуется в брикеты и утилизируется.

К минеральным сорбентам относятся перлит, вермикулит, цеолит и др. Как правило, для улучшения сорбционных свойств их модифицируют. Обработанный кремнийорганическими соединениями перлит эффективно собирает нефть в концентрации от 6 до 9 г/г.

Базальтовое волокно при определенной модификации может применяться для сорбции нефти и нефтепродуктов. Сорбент получают механическим смешиванием базальтового волокна и кремнийорганических или органических гидрофобизирующих соединений при соотношении 85-98 и 2-15 масс. % соответственно. Базальтовое волокно имеет следующий химический состав, масс. %: 8Ю2 49,5-50,5; ТЮ2 1,1-1,6;

АЬОз 14,5-15,5; N320 + К20 2,8-3,5; Ре20з + БеО 14,3-15,3; БОз не более 0,3; СаО 8,5-9,5; М§0 4,8-5,6 и Н20 0,2. Исходное базальтовое волокно хорошо пропитывается водой (гидрофобность 0%) и имеет pH 3,4-5,17. По отношению к легким нефтепродуктам сорбционная емкость гидрофобизированного базальтового волокна достигает 50-60 г/г. Сорбент на основе базальтового волокна по сравнению с другими волокнистыми сорбентами обладает существенно большей сорбционной способностью, и, кроме того, он может быть использован многократно.

Разработаны методы обезвреживания нефти и нефтепродуктов путем их связывания и превращения в твердые образования. При введении в смесь портландцемента жидких и твердых углеводородов образуется состав, который затем подвергают сушке. При этом углеводороды оказываются как бы покрытыми слоем цемента, изолирующим данный состав от соприкосновения с окружающей средой. Далее происходит застывание цемента в форме, которая придается смеси на начальном этапе перемешивания.

К способам отверждения можно отнести также известкование - обработку нефтезагрязненных грунтов негашеной известью в количестве 0,5-5% от массы разлитого нефтепродукта, в результате чего образуется твердый продукт, прочно удерживающий нефтепродукты в виде сложных образований - комплексов. Предлагаемый Курским институтом экологической безопасности препарат «Эконафт» применяется для санации нефтезагрязненных почв и ликвидации аварий нефтепроводов [12]. Он представляет собой порошок, состоящий из негашеной извести и «модификатора» и добавляемый в отходы в соотношении 1 - 1н-2 по объему. Технология использования «Эконафт» основана на свойствах минеральных сорбентов оксидов - магния, кальция и хрома, из которых состоит негашеная известь, при гашении увеличивать удельную поверхность в 15-30 раз и превращаться в объемное вяжущее вещество с высокой адсорбционной способностью относительно углеводородов нефти. Процесс гашения сопровождается выделением большого количества тепла, в результате чего, собственно, и происходит резкое увеличение удельной поверхности.

Гашеная известь, как известно, хорошо смачивается водой, что приводит к резкому сокращению или даже к исчезновению ее абсорбционной способности. Поэтому для придания гидроксиду кальция гидрофобных свойств в процессе гашения в реакционную смесь вводят специальные вещества - модификаторы. В препарате «Эконафт» таким модификатором является триглицерид - полный эфир глицерина и высших жирных кислот. При смешении с известью он реагирует с ионами кальция на поверхности минерального сорбента, в результате чего образуется новое соединение - мыло- триглицерид кальция. Закрепленный на поверхности он придает ей гидрофобные свойства и способность образовывать с углеводородами нефти прочные соединения.

Предложенная технология обезвреживания загрязненных грунтов с использованием препарата «Эконафт» заключается в смешивании отходов с негашеной известью с добавкой модификатора и обработке смеси водой. При этом образуются гидрооксиды щелочно-земельных металлов, порошок которых обладает гидрофобными свойствами. Нефтепродукты препаратом эффективно адсорбируются с получением сухого, стойкого при хранении однородного порошкообразного вещества «ПУН», представляющим собой гранулы, состоящие из нефтесодержащих отходов, заключенных в известковые оболочки - капсулы. Полученные гранулы не смачиваются водой, морозоустойчивы и стойки при хранении [3].

Еще одним способом отверждения является смешивание нефти и нефтепродуктов с известковой вяжущей пастой на водной основе. Полученную смесь формируют в блоки размеров, удобных для последующей транспортировки или захоронения, и выдерживают до затвердения, в результате чего достигается капсулирование экологически вредных веществ в твердой цементирующей массе. Для ускорения процесса отверждения и снижения расхода огвердителя в композиционную смесь добавляют нетоксичную окись хрома. Окись хрома, полученная при термическом разложении двухромовокислого аммония, рассыпается по поверхности отверждаемой жидкости. Благодаря сильно развитой структуре поверхности она поглощает нефть, нефтепродукты и растительные масла.

Среди обширного класса сорбентов наиболее эффективными для удаления с различных поверхностей органических загрязнителей являются искусственные сорбенты многоразового пользования с высокоразвитой открытой пористой структурой. К таким материалам относится, например, сорбент, созданный на основе карбамидного олигомера, специальным способом вспененного и превращенного в поропласт с высокоразвитой межфазной поверхностью. Он обладает отличными олеофильными свойствами и высокой сорбционной способностью: 1 г такого сорбента может поглощать до 60 г нефти и нефтепродуктов, а скорость сорбирования составляет от нескольких минут до 1—2 ч в зависимости от вязкости нефтепродукта. Из сорбента легко извлечь до 97 % собранных нефтепродуктов простым методом отжима.

В Сибирском институте химии нефти СО РАН (г. Томск) разработана технология получения высокоэффективных адсорбентов на основе ультрадисперсных порошков [7].

Адсорбенты на основе окиси алюминия имеют неравновесную кристаллическую структуру, развитую поверхность и способны эффективно и быстро адсорбировать из воды органические вещества, нефтепродукты, тяжелые металлы, радионуклиды, галогены и другие загрязнители. Кроме того, эти адсорбенты обладают способностью коагулировать и осаждать коллоидные частицы железа, неорганических примесеи и эмульсии органических веществ и нефтепродуктов в водной среде.

Твердые синтетические полимерные сорбенты (пенополиуретан, различные смолы) состоят из частиц, содержащих открытые поверхностные поры, способные удерживать углеводороды и закрытые внутренние поры, придающие частицам хорошую плавучесть. Такие сорбенты не поглощают воду, но способны поглотить 2-5-кратный объем углеводородов. На некоторых предприятиях США для удаления нефти с поверхности воды используют хлопья полиуретановой пены, которая в дальнейшем собирается и отжимается с помощью специального устройства.

Хорошими сорбционными свойствами обладают такие полимерные материалы, как вспененные полистирольные гранулы или фенолформальдегидная стружка. Одним из лучших материалов в сорбции нефти является препарат «Пламилод», который представляет собой специально изготовленную пластмассу. Данный материал может впитать в себя до 1 т нефти на 40-130 кг собственного веса [6].

В последнее время для очистки природных сред все большее применение находят природные сорбенты естественного происхождения, такие как бентонитовые глины, цеолиты, шунгизиты и другие глинистые породы, которые обладают достаточно высокой сорбционной емкостью, катиоонообменными свойствами, сравнительно низкой стоимостью и доступностью, как местного материала. Значительно расширяет область применения местных природных сорбентов тот факт, что можно получать различные модификации вышеназванных сорбентов или их композиции для того, чтобы целенаправленно использовать их непосредственно в регионе.

В качестве сорбентов практически могут служить все мелкодисперсные и пористые природные твердые вещества, имеющие развитую поверхность.

Обычно природные адсорбенты имеют недостатки, к числу которых относят нелинейность изотерм и низкую каталитическую активность. Поэтому их модифицируют, применяя один из следующих способов: обработку водой, растворами кислот, щелочей и неорганических солей, связывание гидроксильных групп хлорсиланами или другими веществами, нанесением на поверхность нелетучих органических жидкостей, получение коллоидных систем и нанесением пыли адсорбента на инертный носитель.

С 1828 года минералогам известен минерал глауконит, однако данные о его происхождении появились значительно позднее. Образуется он на дне морей, на границе между окислительной и восстановительной зоной, как нормальный химический осадок, выпадающий в виде геля. О положительном эффекте при использовании глауконитов для повышения урожайности сельскохозяйственных культур в конце XIX века писали А.Н. Энгельгардт, В.А. Азимов, А.В. Ключарев и академики П.А. Григорьев и Д.Н. Прянишников. Впервые химический состав и условия образования глауконита осадочного происхождения был подробно изучен известным русским почвоведом К.Д. Глинкой в 1896 году.

Глауконит широко распространенный в природе минерал, общие ресурсы которого оцениваются в 35,7 млрд тонн. Россия обладает значительными ресурсами глауконитсодержаицих пород, наиболее крупные скопления приурочены к отложениям третичного периода и мезозойской эры. Наиболее перспективными считают запасы глауконитов в Центрально-европейской части, Калининградской области, Приазовье, Поволжье, на Южном Урале и Зауралье. Крупные месторождения глауконита обнаружены в Челябинской области.

Глауконит - глинистый минерал переменного состава с высоким содержанием двух- и трехвалентного железа, кальция, магния, калия, фосфора, а также содержит более двадцати микроэлементов, среди которых - медь, серебро, никель, кобальт, марганец, цинк, молибден, мышьяк, хром, олово, бериллий, камдий и другие. Все они находятся в легко извлекаемой форме сменных катионов, которые замещаются находящимися в избытке в окружаемой среде элементами. Этим свойством, а также слоистой структурой, объясняются высокие сорбционные свойства по отношению к нефтепродуктам, тяжелым металлам, радионуклидам. В то же время для глауконита характерен низкий процент десорбции (удаление из жидкостей или твердых тел веществ, поглощенных при адсорбции или абсорбции) и пролонгированное действие, высокая теплоемкость, пластичность и пр. структурная решетка глауконита представлена на рис. 5.3.

Глаукониты благодаря своим специфическим свойствам (наличию красящих окислов, активных катионов, слоистой структуре) используются для очистки питьевой и оборотной воды, восстановления почв, очистки сточных вод, улавливании газов, устранения запахов, нейтрализации разливов нефтепродуктов, сорбции тяжелых металлов, радионуклидов и токсикантов.

Глауконит соответствует техническим условиям ТУ-2164-003-45670985-05. В табл. 5.4 представлены физико-химические свойства глауконита. Глауконит по содержанию тяжелых металлов и радионуклидов должен соответствовать требованиям, представленным в табл. 5.5.

Таблица 5.4

Физико-химические свойства глауконита_

Наименование показателя

Единицы измерения

Значение показателя

Внешний вид

ММ

гранула

Содержание минерала глауконита

%

50-95

Массовая доля влаги

%

4-6

Массовая доля общего фосфора на абсолютно сухое вещество

%

0,05-0,065

Массовая доля общего калия на абсолютно сухое вещество

%

3-9

Массовая доля подвижных форм фосфора на сухое вещество

мг-кг

50-100

Массовая доля подвижных форм калия на сухое вещество

мг-кг

50-100

Глауконит предназначается для использования в качестве сорбента тяжелых металлов, радионуклидов и нефтепродуктов, при очистке сточных и оборотных вод, почв, подвергающихся техногенному загрязнению, в том числе обочин автодорог, скверов и газонов, расположенных вблизи городских автомагистралей с интенсивным движением автотранспорта; предприятий нефтеперерабатывающей промышленности, нефтеперекачивающих станций, АЗС, авторемонтных комплексов. Нор-

мы внесения глауконита в качестве сорбента зависят от уровня и площади загрязнений, а также от степени его обогащения.

Таблица 5.5

Требования к глауконитам по содержанию радионуклидов и тяжелых металлов

Наименование показателей

Допустимые уровни в соответствии с нормативными документами

Тяжелые металлы, мг-кг, не более

Свинец

32,0

Ртуть

2,1

Медь

33,0

Цинк

55,0

Кадмий

2,0

Никель

20,0

Радионуклиды, Бк-кг, не более

НРБ-99.СП.2.6.1758-99 (п.1.4; п.5.3.5.)

Цезий-137

60

Стронций-90

20

Глауконит относится к группе малотоксичных веществ четвертого класса опасности. По пожарным свойствам глауконит относится к группе негорючих и невзрывчатых веществ.

Особое место среди сорбентов, используемых для снижения концентрации нефтепродуктов, занимают глины и их модификации. Глины являются неорганическими ионообменниками. Это их свойство играет огромную роль в плодородии почвы, а также в движении в почве таких загрязнителей, как, например, тяжелые металлы или ионные пестициды.

Поскольку глинистая фракция большинства почв в силу высокой удельной поверхности с многочисленными активными центрами на ней фактически определяет свойства почвы, используемые в сельском хозяйстве. Кроме того, именно глинистой фракцией почв определяются буферные свойства почвы. Особые свойства глин, относящихся к группе смектитов, оказались чрезвычайно полезными в технологиях восстановления почв и отверждения опасных отходов, которые очистить стандартными технологиями не представляется возможным. Преобладающими минералами в глинистой фракции почв являются алюмосиликаты.

С середины 1980-х гг. для технологии восстановления объектов окружающей среды начали использовать модифицированные глины, или, как их называют чаще, органоглины. Они получаются обработкой природных глин четвертичными аминами, т.е. алкиламмониевыми солями. Органически модифицированные глины, или органоглины, состоят из бентонита, модифицированного солями четвертичного амина, например, хлоридами диметилдиалкил аммония. Главным компонентом бентонита является глинистый минерал монтмориллонит. Он имеет катионообменную емкость 75-90 мэкв/100 г. Аммонийная функциональная группа с атомом азота в четвертичном амине, которая имеет поло-

жительныи заряд, замещает на поверхности глины ионы натрия и кальция. В процессе приготовления органоглины замещенные ионы натрия и кальция вместе с высвобождающимися хлорид-ионами из молекул исходного четвертичного амина отмываются - переходят в раствор. После этой операции образовавшаяся модифицированная глина действует как неионногенное поверхностно-активное вещество, активно захватывающее неполярные молекулы нефти, масел и других плохо растворимых органических соединений.

Для удаления из воды растворимых органических соединений часто используют активированный уголь. Однако содержащиеся в сильно загрязненной воде капли нефти или масел закрывают поры активированного угля, и он перестает «работать». Применение органоглин предотвращает закрывание пор на частицах активированного угля.

Если удаление нефти является главной целью применения органоглины, то глина гранулируется, а затем смешивается антрацитом, играющим в данном случае роль активированного угля.

Использование модифицированных глин в качестве добавок к цементирующим связкам позволяет иммобилизовать нефтепродукты и ароматические соединения, часто присутствующие в отходах многих типов, в том числе в загрязненных почвах.

В Республике Татарстан находится Биклянское месторождение бентонитовых глин, которые можно использовать в качестве сорбентов для рекультивации загрязненных нефтепродуктами земель. В связи с этим, были проведены исследования по разработке эффективного метода активации бентонитовых глин с целью улучшения их сорбционных свойств, в частности, исследована возможность повышения поглотительной способности природных сорбентов на примере шунгита и бентонита при обработке природным высокомолекулярным соединением -картофельным крахмалом.

Модификацию природных сорбентов проводили раствором щелочного крахмала. Процесс модификации состоял из двух этапов: приготовления модификатора и непосредственно модификация сорбентов. На первой стадии крахмал смешивали с 7% раствором КОН при комнатной температуре и после кипячения охлаждали.

Сорбенты предварительно измельчали, а затем смешивали при комнатной температуре в различных соотношениях с предварительно приготовленным раствором модификатора. Модифицированный природный сорбент отделяли от воды вакуум-фильтрацией.

В полученных модифицированных сорбентах определяли сорбционную емкость и площадь их поглотительной поверхности (табл. 5.6).

Эффективность сорбции зависит от величины поверхности взаимодействия. Основной характеристикой сорбционной способности материала является «емкость» сорбента - определенное количество тех или иных загрязнителей, которые могут быть поглощены данным количеством сорбента.

Введение крахмала в шунгит сначала приводит к увеличению сорбционной емкости сорбента. При введении 4х10"3мг/г крахмала сорбционная емкость увеличивается примерно на 12%, а затем, при дальнейшем увеличении содержания полимера падает до исходного значения. Таким образом, модификация шунгита практически не приводила к заметному увеличению сорбционной емкости сорбента.

Таблица 5.6

Изменение сорбционных характеристик сорбентов_

Концентрация крахмала мг/г сорбента

Наименование сорбента

шунгит

бентонит

Сорбционная емкость, мг-экв/10 Ог

Сорбционная емкость, мг-экв/100 г

0

68,88±32,5

43,33±4,16

2 -10°

76,11±4,77

48,88±2,39

4-10-'

77,77± 11,94

79,99±6,95

6-КС

66,66±0

98,33±4,15

8 - КГ’

66,66±0

113,88±2,39

При модификации глакоунита изменение сорбционной емкости происходит в пределах 29%. При увеличении концентрации крахмала в растворе до 1 Ох 10'3 мг/г сорбционная емкость глакоунита возрастает; при дальнейшем его увеличении наблюдается незначительный ее спад.

Модифицирование бентонита приводит совсем к другой закономерности. С ростом концентрации крахмала наблюдается устойчивое возрастание сорбционной емкости. Максимальные значения 113,88 мг-экв/100г были достигнуты при обработке бентонита щелочным раствором при содержании 8х10'3мг/г крахмала. Таким образом, увеличение сорбционной емкости модифицированного бентонита относительно не модифицированного составило 2,6 раза.

 
< Пред   СОДЕРЖАНИЕ     След >