ВИДЫ ИЗНОСА ДЕТАЛЕЙ
В процессе эксплуатации авиационной техники самой распространенной причиной возникновения дефектов старения является износ, т.е. изменение размеров, формы и состояния поверхности деталей под действием различного рода нагрузок, сил трения и влияния окружающей среды.
В зависимости от абсолютного значения величины износа различают нормальный (естественный), износ при котором повреждения, возникшие на деталях, не нарушают нормальной работы механизма. Зазоры в сочленениях при этом не выходят за допустимые пределы. Износ, при котором зазоры превышают допустимые пределы, появляются ударные нагрузки, называют дефектным. Наличие дефектного износа ухудшает работу соединения, вызывает нагрев деталей, заедания, задиры. Дефектный износ интенсивно прогрессирует и может привести к поломке деталей и, как следствие, отказу механизма.
На рис. 1.1 представлен процесс изменения зазоров в соединении. При разработке соединения определяется минимальный зазор Им, необходимый для компенсации температурных расширений и размещения смазки. Также устанавливается предельно допустимый зазор И3, при котором износ остается нормальным. Весь процесс износа можно разделить на три периода. Отрезок Им — 1 отражает процесс приработки поверхностей деталей, когда сглаживаются микронеровности. Этот период характеризуется достаточно интенсивным износом, особенно в самом начале процесса. По мере приработки износ стабилизируется, и наступает период нормального, установившегося износа, в течение которого зазор увеличивается медленно, с постоянной скоростью (отрезок 1—2). Период дефектного износа наступает, когда зазор достигнет предельного значения и начнет его превышать. Скорость износа при этом будет все быстрее возрастать.

Рис. 1.1. График зависимости величины износа И от времени работы V.
I — приработка; II — установившийся износ; III — дефектный износ; Им — 1 — период приработки; 1-2 — период установившегося износа; 2-3 — период дефектного износа до разрушения; Им— монтажный зазор; И3— предельно допустимый зазор; Ип— зазор после приработки; а — угол наклона кривой, характеризующий
интенсивность износа
Для каждого механизма очень важно уловить момент перехода естественного износа в дефектный и прекратить эксплуатацию для замены или ремонта износившейся детали.
Различают три вида естественного износа: механический, коррозионный и усталостный.
Механический износ возникает в результате действия сил трения и ударных нагрузок в сопряженных деталях, имеющих взаимное перемещение. Выделяют следующие разновидности механического износа: абразивный, схватывание 1-го рода (атермическое), тепловой износ (схватывание 2-го рода), осповидный и окислительный.
Абразивный — самый распространенный вид износа, возникает от воздействия мелких твердых частиц, попадающих в зазоры между деталями со смазкой или другим путем. Эти частицы, подобно режущему инструменту, образуют на поверхности деталей риски и царапины, что ухудшает состояние поверхности и усугубляет износ. Разновидностью абразивного износа является газо-бразивный, при котором рабочие поверхности и передние кромки лопаток компрессора и лопасти воздушных винтов повреждаются частицами песка и пыли, попадающими вместе с воздухом.
Износ схватывания Нго рода возникает в малоподвижных сильно нагруженных соединениях. Скорость взаимного перемещения в таких соединениях не более 1 м/с, а удельное давление превышает предел текучести материала. При больших удельных давлениях происходит выдавливание масляной пленки из зазора между деталями, и в зонах непосредственного контакта начинают действовать силы молекулярного притяжения, под действием которых происходит схватывание поверхностных слоев деталей при относительно низкой температуре (отсюда второе название износа — атермическое схватывание). При этом с детали, имеющей меньшую поверхностную прочность, материал срывается сопряженной деталью и переносится на нее. В результате на деталях возникают выступы и раковины, поверхности становятся шероховатыми, что усиливает износ и в дальнейшем вызывает разрушение. Атермическое схватывание может происходить в относительно неподвижных соединениях, например в замках крепления лопаток компрессора газотурбинного двигателя.
Тепловой износ возникает при больших скоростях скольжения поверхностей деталей и повышенных удельных давлениях. При таких условиях происходит интенсивный рост температуры в поверхностных слоях материала детали вплоть до температуры плавления, что вызывает их разупрочнение, размазывание и унос частиц металла с поверхности трения. В результате возникает тепловое сваривание с заклиниванием деталей. Тепловому износу подвержены поршни и цилиндры поршневых двигателей, оси сателлитов в редукторах турбовинтовых двигателей.
Осповидный износ возникает в узлах, работающих при трении качения (поверхности зубчатых колес, тела качения в подшипниках), поверхность контакта у которых мала и подвержена высоким контактным напряжениям. При трении качения всегда присутствует явление проскальзывания, поскольку тела качения в узлах трения имеют различный радиус, что и приводит к формированию многократных повторных микродеформаций в сжатом объеме и возникновению остаточных напряжений. Проскальзывание может усугубляться неточностью изготовления пар трения и перекосами в зацеплениях. Такого рода изнашивание имеет усталостный характер и со временем приводит к возникновению трещин, развивающихся вглубь детали под небольшим углом к поверхности в направлении качения. Затем трещина вновь выходит на поверхность, образуя оспинки и раковины. При этом происходит отделение частиц материала детали (питтинг) размером 0,2—0,3 мм.
Окислительный износ возникает на деталях, работающих при трении скольжения и качения, в среде, насыщенной кислородом, и представляет собой процесс образования и разрушения на поверхностях трения тончайших пленок окислов. Этот вид износа характерен для узлов, работающих при сухом контакте или граничной смазке. В таких условиях поверхностная окисная пленка становится очень хрупкой, растрескивается и отслаивается, образуя абразивный материал, усиливающий износ.
Коррозионный (химический) износ — результат химического и электрохимического взаимодействия металлических деталей с окружающей средой. В зависимости от условий возникновения коррозии различают атмосферную, контактную, газовую коррозию, коррозию от воздействия агрессивных веществ и биологическую.
Атмосферная коррозия возникает при взаимодействии незащищенных деталей с атмосферной влагой. Процесс окисления в этом случае химический, а чаще более интенсивный электрохимический, так как атмосферная влага с растворенными в ней солями различных металлов и газами представляет собой электролит. Атмосферная коррозия более интенсивно развивается на загрязненных деталях и в атмосфере, сильно загрязненной промышленными отходами. От атмосферной коррозии страдают в первую очередь контровочные и крепежные детали, нижняя часть поверхности крыла и фюзеляжа, детали шасси и подпольная часть воздушного судна.
Различают контактную коррозию в сырых и сухих стыках деталей. При попадании влаги (электролита) в зазор между деталями из разнородных материалов возникает гальванический процесс, при котором разрушается деталь с более высоким электрическим потенциалом. Чем больше разность потенциалов деталей, тем интенсивней протекает процесс. На воздушных судах таким видом коррозии поражаются дюралюминиевые и магниевые детали, соединенные стальными болтами или соприкасающиеся со стальными деталями.
Коррозия, возникающая в сухих стыках деталей, совершающих элементарные перемещения относительно друг друга (вибрации), получила название фреттинг-коррозии. Она встречается в болтовых и заклепочных соединениях, в шлицевых соединениях, в стыках элементов конструкции, в узлах, собранных с прессовой посадкой. Природа возникновения фреттинг-коррозии достаточно сложна. Основной причиной разрушения поверхности материала в этих условиях являются усталостные и коррозионные процессы. Кроме того, возникают благоприятные условия для электрохимических процессов, которые также участвуют в разрушении контактирующих деталей. При этом на контактирующей поверхности обнаруживаются следы усталостного, абразивного и окислительного износа. Фреттинг-коррозия снижает усталостную долговечность материала в 1,5—2,5 раза, которая возрастает на порядок в условиях действия циклических нагрузок.
Газовая коррозия возникает на деталях под действием отработавших газов, образующихся в процессе сгорания топлива, в состав которых входят различные агрессивные химические соединения. Особо агрессивными из них являются соединения молибдена и серы, которые вызывают язвенную коррозию жаропрочных сплавов, проникающую на большую глубину. Для тонкостенных деталей, таких как выхлопные трубы, реактивные сопла, жаровые трубы, сопловые и рабочие лопатки турбин, это является опасным явлением, приводящим к их разрушению.
Коррозия от воздействия агрессивных веществ на воздушных судах может наблюдаться в зонах размещения бортовых аккумуляторных батарей, буфета-кухни, санузлов. Например, интенсивную коррозию вызывают растворы солей и кислот. Для дюралюминиевых сплавов особенно опасны щелочные растворы.
Биологическая коррозия — результат деятельности микроорганизмов, способных ускорять электрохимическую коррозию алюминиевых сплавов. Такой вид коррозионных повреждений наблюдается в первую очередь на воздушных судах с большими сроками службы, в зонах с ограниченным доступом при техническом обслуживании в процессе эксплуатации.
Усталостный износ возникает на деталях, работающих в условиях знакопеременных и вибрационных нагрузок в зонах концентрации напряжений. Такими зонами являются отверстия, пазы, галтели, переходы, резьбовые поверхности, шлицы, а также места расположения механических повреждений и коррозии. В точках материала, где внутренние напряжения складываются с напряжениями от повторных внешних нагрузок, возникает нарушение связей между кристаллами, и появляются микротрещины, которые постепенно увеличиваются и ослабляют сечение. Трещины возникают, как правило, на поверхности детали независимо от того, было ли связано нагружение с поверхностными напряжениями. В дальнейшем сечение настолько ослабляется, что не может выдержать нормальных нагрузок, и происходит разрушение. Усталостному износу подвержены все детали, которые работают в зонах вибрации и при трении качения, например детали воздушных судов и авиадвигателей.