Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника arrow Выбор материалов и технологий в машиностроении

ПРЕВРАЩЕНИЯ В СТАЛЯХ ПРИ НАГРЕВЕ

При многих видах термической обработки сталь нагревают до температур, соответствующих существованию аустенита (процесс аустенитизации). Образование аустенита при нагреве является диффузионным процессом и подчиняется основным положениям теории кристаллизации.

При нагреве эвтектоидной стали (0,8% С) несколько выше критической точки А| (727 °С) перлит (ферритокарбидная структура) превращается в аустенит:

Ф/> +Fe3C —> As. (3.1)

Превращение состоит из двух одновременно протекающих процессов: полиморфного а —» у-перехода и растворения в аустените цементита.

При нагреве доэвтектоидной стали выше точки А] после превращения перлита в аустенит образуется двухфазная структура — аустенит и феррит. При дальнейшем нагреве в интервале температур

А3 феррит постепенно растворяется в аустените. При температуре А3, феррит исчезает, а концентрация углерода в аустените соответствует содержанию его в стали. Аналогично протекает превращение и в заэвтектоидной стали. При температуре несколько выше А! (727 °С) перлит превращается в аустенит, содержащий 0,8% С. В интервале температур А{—Аст происходит растворение избыточного цементита. Выше температуры Аст будет только аустенит, содержание углерода в котором соответствует его содержанию в стали.

Рост зерна аустенита при нагреве. Как указывалось выше, зародыши аустенита при нагреве выше А, образуются на границах раздела феррит—карбид. При таком нагреве число зародышей всегда достаточно велико и начальное зерно аустенита мелкое. Однако нередко при таких невысоких температурах нагрева наблюдается разнозерни-стость — на фоне мелкого зерна отмечаются и очень крупные зерна.

При дальнейшем повышении температуры или увеличении длительности выдержки при данной температуре происходит собирательная рекристаллизация, и зерно увеличивается. Рост зерна аустенита происходит самопроизвольно и вызывается стремлением системы к уменьшению свободной энергии вследствие сокращения поверхности зерен.

Способность зерна аустенита к росту неодинакова даже у сталей одного марочного состава вследствие влияния условий их выплавки.

По склонности к росту зерна различают два предельных типа сталей: наследственно мелкозернистые и наследственно крупнозернистые.

В наследственно мелкозернистой стали при нагреве до высоких температур (1000—1050 °С) зерно увеличивается незначительно, однако при более высоком нагреве наступает бурный рост зерна. В наследственно крупнозернистой стали, наоборот, сильный рост зерна наблюдается даже при незначительном перегреве выше А,.

В двухфазных областях, например в заэвтектоидных сталях, в интервале температур Ас1Аст рост зерна аустенита сдерживается не-растворившимися карбидными частицами. Такое же сдерживающее влияние на рост зерна в доэвтектоидных сталях в интервале температур Ас1Аст оказывают участки феррита.

Легирующие элементы, особенно карбидообразующие, замедляющие собирательную рекристаллизацию, задерживают рост зерна аустенита. Наиболее сильно действуют Т1, V, Ъх, N6, У и Мо, образующие труднорастворимые в аустените карбиды, которые служат барьером. Более слабое влияние оказывает такой карбидообразующий элемент, как хром. Марганец и фосфор способствуют росту зерна аустенита.

Наследственно мелкозернистая сталь при достаточно высокой температуре может даже иметь более крупное зерно аустенита, чем наследственно крупнозернистая сталь, поэтому введено понятие о действительном зерне, т.е. зерне, существующем в стали при данной температуре.

Размер действительного зерна аустенита обусловлен температурой нагрева, продолжительностью выдержки при ней и склонностью данной стали к росту зерна при нагреве.

Продолжительный нагрев доэвтектоидной (заэвтектоидной) стали при температурах, значительно превышающих А3 или Аст, приводит к образованию крупного действительного зерна как непосредственно при этой температуре, так и после охлаждения до 20 °С. Такой нагрев принято называть перегревом стали. Перегретая сталь характеризуется крупнокристаллическим изломом.

Рост видманштеттовых кристаллов феррита происходит при высоких температурах в условиях диффузии углерода (рис. 3.1 а).

Микроструктура стали, хЮО

Рис. 3.1. Микроструктура стали, хЮО: а — перегретой; б — пережженной

Перегрев может быть исправлен повторным нагревом стали доэвтектоидной до температуры выше точки А3, а эвтектоидной и заэвтектоидной — выше А|.

Нагрев при еще более высокой температуре, чем нагрев, вызывающий перегрев, и к тому же в окислительной атмосфере, называют пережогом стали. Он сопровождается образованием по границам зерен окислов железа (рис. 3Лб). При пережоге излом стали камневидный. Пережог — неисправимый дефект стали.

Влияние величины зерна на свойства стали. Величина зерна стали не оказывает существенного влияния на стандартный комплекс механических свойств, получаемых при испытании на статическое растяжение и твердость, но с ростом зерна резко снижается ударная вязкость, работа распространения трещины и повышается порог хладноломкости. Чем крупнее зерно, тем более сталь склонна к закалочным трещинам и деформациям. Все это следует учитывать при выборе режимов термической обработки.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Пред   СОДЕРЖАНИЕ   След >
 
Популярные страницы