Смазочные материалы
Основная цель при разработке экологобезопасных смазочных материалов - создание продукта с высокой биоразлагаемостью и низкой экотоксичностью. В развитых странах Запада в
настоящее время государственные и частные компании начинают создавать рынок экологобезопасных смазочных материалов. Большинство исследований ориентировано на химическую композицию продукта и оценку его биоразлагаемости. При создании экологически безопасных смазочных материалов рассматривают два основных направления: производство базовых масел, химическая природа которых определяет характер воздействия на окружающую среду, и синтез новых присадок -экологобезопасных, биоразлагаемых и эффективных.
В настоящее время и, вероятно, для будущего, особое значение приобретают три группы базовых масел, получаемых из различных сырьевых источников [104]: нефтяные масла гидро-крегинга (ГК), полиальфаолефины (ПАО) и сложные эфиры, подверженные быстрому биоразложению в окружающей среде. Большое значение на неопределенно долгий срок, несомненно, сохранят и базовые нефтяные масла традиционных поточных схем, особенно с учетом того фактора, что смазочные материалы, получаемые на базе ПАО, сложных эфиров полиспиртов, полиалкиленгликолей и сложных диэфиров, имеют стоимость в 2-10 раз больше, чем нефтепродукты. Повышенная биоразлагаемость при этом не является стимулом для преодоления разницы в ценах [105].
Высокие эксплуатационные характеристики и экологическая чистота минеральных масел обеспечивается набором определенных качеств. Прежде всего, это их узкий фракционный и благоприятный групповой химический состав с минимальным количеством содержащих серу и азот соединений в базовых маслах. Выбор сырья, сортировка нефтей, используемых при производстве высокоиндексных масел, и их раздельная переработка имеют первостепенное значение. В получении базовых минеральных масел, удовлетворяющих экологическим требованиям, большую роль играет селективная очистка, сни-
жающая канцерогенность продукта. В настоящее время в США и Канаде свыше 70% базовых масел получают путем селективной очистки. Широкие возможности открывает применение таких современных процессов, как гидрокрекинг, гидродепарафинизация, гидроизомеризация. Указанные технологии подробно описаны в работе [105]. Использование гидрокаталитических процессов в сочетании с традиционными методами очистки масляного сырья селективными растворителями улучшает эксплуатационные и экологические свойства базовых масел [106].
В табл. 1.4 приведены сравнительные данные по химическому составу базовых масел, полученных с использованием селективной очистки и гидроочистки. Последняя существенно снижает содержание аренов, серы и азота в маслах.
Таблица 1.4
Влияние гидроочистки на химический состав
базовых масел [1071
Вид очистки |
Содержание |
||
аренов, % об. |
серы, млн *' |
азота, млн'1 |
|
Селективная очистка |
15-30 |
2000-5000 |
20-40 |
Гидроочистка |
<1 |
<20 |
<1 |
Внедрение в производство базовых минеральных масел процессов гидрокрекинга и гидроизомеризации позволяет получать продукты повышенной биоразлагаемости и не содержащие аренов. Масла гидрокрекинга, согласно результатам, полученным с помощью современных методов испытаний, нетоксичны, практическое отсутствие в них аренов говорит о весьма низкой канцерогенности и незначительной вероятности ее роста путем образования и накопления полициклических аренов в процессе эксплуатации; отсутствие аренов и преобла-
дание изопарафинов обеспечивает достаточно высокую биоразлагаемость [105].
В США базовые масла гидрокрекинга производятся с конца 1996г. [108]. Подготовлена к пуску установка в Финляндии [109].
В России ВНИИНП совместно с научно-инженерным центром ОАО «ЛУКОЙЛ» и АО «ЛУКОЙЛ - Волгограднефтепе-реработка» ведут исследовательские работы по организации производства ряда дефицитных масел и основ с использованием гидрогенизационных технологий, в частности, авиационного масла МС-8 и авиационной гидрожидкости АМГ-10.
По сравнению с минеральными маслами, синтетические в ряде случаев обладают лучшими экологическими характеристиками. К важнейшим классам синтетических масел с точки зрения экологической безопасности относятся масла, изготовленные на базе синтетических сложных эфиров, полиальфао-лефинов и полибутенов. Они нетоксичны, неканцерогенны, характеризуются низкой эмиссией вредных веществ.
Синтетические масла на основе сложных эфиров с присадками с 60-х годов широко используются в ГТД гражданских и военных самолетов. В ЦИАМ совместно с ВНИИНП и 25 Гос-НИИ МО РФ проводятся работы по созданию высокотермоста-билыюго (до 240° С) сложноэфирного масла с использованием эффективных композиций присадок, не уступающего по качеству лучшим зарубежным маслам [103]. Анализ научно-технической и патентной информации по маслам для авиационных ГТД показывает, что сложные эфиры полиолов остаются основным классом соединений для применения в качестве базовых основ [110]. Однако, ситуация меняется со следующим поколением авиационных двигателей, поскольку совершенствование конструкции и необходимость снижения расхода топлива ведут к росту давления, температуры и нагрузки на масло.
Последнее способствует опасности возникновения локальных нагарообразований. Поэтому для военной авиации в будущем необходим отказ от использования масел на основе сложных эфиров. Для указанной цели наиболее перспективны масла нового типа - на базе простых перфторалкилполиэфиров [107]. По современным данным, эти соединения нетоксичны и за рубежом даже используются в парфюмерии и для консервации мраморных памятников искусства и архитектуры.
Большое влияние на экологические свойства смазочных материалов оказывают присадки. В авиационных маслах в качестве присадок широко используются такие традиционные антиокислители и ингибиторы коррозии, как диоктилдифени-ламин, фенил- #-нафтиламин, бензотриазол, присадка К-51 сукцинимидного типа и другие, положительно зарекомендовавшие себя.
Во всем мире уже длительное время ведутся работы по созданию новых нетоксичных и биоразлагаемых продуктов. В частности, с 90-х годов проводятся разработки заменителей хлорсодержащих присадок [107]. Важным является вопрос замены соединений свинца. Заменителем свинца являются соединения висмута. Начата разработка висмутдитиокарбаматной присадки [105, 111].
Разработаны такие присадки, как Миф-1 (присадка сложного состава бензольного типа), 1г§апох Ь-57 (антиокислительная присадка фирмы Сиба, октилированный и бути лированный дифениламин), присадка «X» (фторсодержащее соединение с функциональными группами оксисульфита и оксикарбомата) и др.
Улучшаются свойства известных присадок. Так, в трикре-зилфосфате снижено содержание нейтротоксичного ортоизомера до 3% (Россия), а в США выпускается трикрезилфосфат, не содержащий ортоизомера.