ВРЕМЕННЫЕ РЯДЫ, МНОГОМЕРНЫЕ МЕТОДЫ СТАТИСТИКИ И МЕТОДЫ ТЕОРИИ КАТАСТРОФ

П3.1. АНАЛИЗ ВРЕМЕННЫХ РЯДОВ

Виды и методы анализа временных рядов

Временной ряд представляет собой совокупность последовательных измерений переменной, проведенных через одинаковые интервалы времени[1]. Анализ временных рядов позволяет решать следующие задачи:

  • • исследовать структуру временного ряда, включающую, как правило, тренд — закономерные изменения среднего уровня, а также случайные периодические колебания;
  • • исследовать причинно-следственные взаимосвязи между процессами, определяющие изменения рядов, которые проявляются в корреляционных связях между временными рядами;
  • • построить математическую модель процесса, представленного временным рядом;
  • • преобразовать временной ряд средствами сглаживания и фильтрации;
  • • прогнозировать будущее развития процесса.

Значительная часть известных методов предназначена для анализа стационарных процессов, статистические свойства которых, характеризуемые при нормальном распределении средним значением и дисперсией, постоянны, не меняются с течением времени.

Но ряды часто имеют нестационарный характер. Нестационарность можно устранить следующим образом:

  • • вычесть тренд, т.е. изменения среднего значения, представленного некоторой детерминированной функцией, которую можно подобрать путем регрессионного анализа;
  • • выполнить фильтрацию специальным нестационарным фильтром.

Для стандартизации временных рядов в целях единообразия методов

анализа целесообразно провести их общее или посезонное центрирование путем деления на среднюю величину, а так же нормирование путем деления на стандартное отклонение.

Центрирование ряда удаляет ненулевое среднее значение, которое может затруднить интерпретацию результатов, например, при спектральном анализе. Цель нормирования — избежать в вычислениях операций с большими числами, что может привести к снижению точности расчетов.

После указанных предварительных преобразований временного ряда может быть построена его математическая модель, по которой осуществлено прогнозирование, т.е. получено некоторое продолжение временного ряда.

Чтобы результат прогноза можно было сопоставить с исходными данными, над ним следует произвести преобразования, обратные выполненным.

На практике наиболее часто используют методы моделирования и прогнозирования, а корреляционный и спектральный анализ рассматривают как вспомогательные методы. Это заблуждение. Методы прогнозирования развития средних тенденций позволяют получить оценки с существенными погрешностями, что весьма затрудняет прогнозирование будущих значений переменной, представленной временным рядом.

Методы корреляционного и спектрального анализа позволяют выявить различные, в том числе инерционные свойства системы, в которой идет развитие изучаемых процессов. Применение этих методов позволяет по текущей динамике процессов с достаточной уверенностью установить, как и с какой задержкой, известная динамика скажется на будущем развитии процессов. Для долгосрочного прогнозирования эти виды анализа позволяют получить ценные результаты.

Анализ и прогнозирование тренда

Анализ тренда предназначен для исследования изменений среднего значения временного ряда с построением математической модели тренда и с прогнозированием на этой основе будущих значений ряда. Анализ тренда выполняют путем построения моделей простой линейной или нелинейной регрессии.

Используемые исходные данные представляют собой две переменные, одна из которых — значения временного параметра, а другая — собственно значения временного ряда. В процессе анализа можно:

  • • опробовать несколько математических моделей тренда и выбрать ту, которая с большей точностью описывает динамику изменения ряда;
  • • построить прогноз будущего поведения временного ряда на основании выбранной модели тренда с определенной доверительной вероятностью;
  • • удалить тренд из временного ряда в целях обеспечения его стационарности, необходимой для корреляционного и спектрального анализа, для этого после расчета регрессионной модели необходимо сохранить остатки для выполнения анализа.

В качестве моделей трендов используют различные функции и сочетания, а так же степенные ряды, иногда называемые полиномиальными моделями. Наибольшую точность обеспечивают модели в виде рядов Фурье, однако не многие статистические пакеты позволяют использовать такие модели.

Проиллюстрируем получение модели тренда ряда. Используем ряд данных о валовом национальном продукте США на период 1929—1978 гг. в текущих ценах. Построим полиномиальную регрессионную модель. Точность модели повышалась, пока степень полинома не достигла пятой:

У = 145,6 - 35,67* + 4,59*2 - 0,189*3 + 0,00353х4 + 0,000024*5,

(14,9) (5,73) (0,68) (0,033) (0,00072) (0,0000056)

где У — ВНП, млрд дол.;

* — годы, отсчитываемые от первого 1929 г.;

под коэффициентами указаны их стандартные ошибки.

Стандартные ошибки коэффициентов модели малы, не достигают величин, равных половине значений коэффициентов модели. Это свидетельствует о хорошем качестве модели.

Коэффициент детерминации модели, равный квадрату приведенного коэффициента множественной корреляции составил 99%. Это означает, что модель объясняет данные на 99%. Стандартная ошибка модели оказалась равна 14,7 млрд, а уровень значимости нулевой гипотезы — гипотезы об отсутствии связи — менее 0,1%.

С помощью полученной модели можно дать прогноз, который в сопоставлении с фактическими данными приведен в табл. ПЗ. 1.

Прогноз и фактический размер ВНП США, млрд дол.

Таблица ПЗ.1

Год

Средняя прогноза

Стандартная ошибка

Доверительный интервал в 95%

Фактическое значение

1979

719,1

57,09

113,6

747,7

1980

727,3

58,79

117,0

746,2

Прогноз, полученный с помощью полиномиальной модели, не слишком точен, о чем свидетельствуют данные, приведенные в таблице.

Корреляционный анализ

Корреляционный анализ необходим для выявления корреляций и их лагов — задержек их периодичности. Связь в одном процессе получила название автокорреляции, а связь между двумя процессами, характеризуемыми рядами — кросскорреляции. Высокий уровень корреляции может служить индикатором причинно-следственных связей, взаимодействий внутри одного процесса, между двумя процессами, а величина лага указывает временную задержку в передаче взаимодействия.

Обычно в процессе расчета значений корреляционной функции на к-м шаге вычисляется корреляция между переменными по длине отрезка / = 1,..., (п — к) первого ряда Xи отрезка / = к,..., п второго ряда К Длина отрезков, таким образом, меняется.

В результате получается некоторая трудная для практической интерпретации величина, напоминающая параметрический коэффициент корреляции, но не идентичная ему. Поэтому возможности корреляционного анализа, методику которого используют во многих статистических пакетах, ограничены узким кругом классов временных рядов, которые нехарактерны для большинства экономических процессов.

Экономистов в корреляционном анализе интересует исследование лагов в передаче воздействия от одного процесса к другому или влияния начального возмущения на последующее развитие того же самого процесса. Для решения таких задач была предложена модификация известного метода, названная интервальной корреляцией'.

!

Кулаичев А.П. Методы и средства анализа данных в среде Vindows. — М.: Информатика и компьютеры, 2003.

Интервальная корреляционная функция представляет собой последовательность коэффициентов корреляции, вычисленных между фиксированным отрезком первого ряда заданного размера и положения и равными им по размеру отрезками второго ряда, выбранных с последовательными сдвигами от начала ряда.

В определение добавляется два новых параметра: длина сдвигаемого фрагмента ряда и его начальное положение, а также используется принятое в математической статистике определение коэффициента корреляции Пирсона. Благодаря этому вычисляемые значения становятся сравнимы между собой и просто интерпретируемы.

Обычно для выполнения анализа необходимо выбрать одну или соответственно две переменные для автокорреляционного или кросскорреляцион-ного анализа, а так же задать следующие параметры:

• размерность временного шага анализируемого ряда для согласования

результатов с реальной временной шкалой;

• длину сдвигаемого фрагмента первого ряда, в виде числа включаемых в

него элементов ряда;

• сдвиг этого фрагмента относительно начала ряда.

Разумеется, необходимо выбрать вариант интервальной корреляции или иной корреляционной функции.

Если для анализа выбрана одна переменная, то вычисляются значения автокорреляционной функции для последовательно увеличивающихся лагов. Автокорреляционная функция позволяет определить, в какой степени динамика изменения заданного фрагмента воспроизводится в сдвинутых во времени его же отрезках.

Если для анализа выбраны две переменные, то вычисляются значения кросскорреляционной функции для последовательно увеличивающихся лагов — сдвигов второй из выбранных переменных относительно первой. Кросскорреляционная функция позволяет определить, в какой степени изменения фрагмента первого ряда воспроизводятся в сдвинутых во времени фрагментах второго ряда.

Результаты анализа должны включать оценки критического значения коэффициента корреляции г0 для гипотезы «г0 = 0» на определенном уровне значимости. Это позволяет не принимать во внимание статистически незначимые коэффициенты корреляции. Необходимо получить значения корреляционной функции с указанием лагов. Весьма полезны и наглядны графики авто- или кросскорреляционных функций.

Проиллюстрируем применение кросскорреляционного анализа на примере. Оценим взаимосвязи темпов прироста ВНП США и СССР за 60 лет с 1930 по 1979 гг. Для получения характеристик долгосрочных тенденций сдвигаемый фрагмент ряда выбран длиной 25 лет. В результате были получены коэффициенты корреляции при разных лагах.

Единственный лаг, при котором корреляция оказывается значимой — 28 лет. Коэффициент корреляции при этом лаге составляет 0,67, тогда как пороговое, минимальное значение — 0,36. Оказывается, что цикличность долгосрочного развития экономики СССР с лагом величиной 28 лет была тесно связана с цикличностью долгосрочного развития экономики США.

Спектральный анализ

Общепринятый способ анализа структуры стационарных временных рядов — это использование дискретного преобразования Фурье[2] для оценки спектральной плотности или спектра ряда. Этот метод можно применять:

  • • для получения описательных статистик одного временного ряда или описательных статистик зависимостей между двумя временными рядами;
  • • для выявления периодических и квазипериодических свойств рядов;
  • • для проверки адекватности моделей, построенных другими методами;
  • • для сжатого представления данных;
  • • для интерполяции динамики временных рядов.

Точность оценок спектрального анализа можно повысить за счет применения специальных методов — использования сглаживающих окон и методов усреднения.

Для анализа необходимо выбрать одну или две переменные, при этом должны быть заданы следующие параметры:

  • • размерность временного шага анализируемого ряда, необходимая для согласования результатов с реальной временной и частотной шкалами;
  • • длина к анализируемого отрезка временного ряда, в виде числа включаемых в него данных;
  • • сдвиг очередного отрезка ряда к0 относительно предыдущего;
  • • тип временного окна сглаживания для подавления в спектре так называемого эффекта вытекания мощности;
  • • тип усреднения частотных характеристик, вычисленных на последовательных отрезках временного ряда.

Результаты анализа включают спектрограммы — значения характеристик амплитудно-частотной спектра и значения фазочастотных характеристик. В случае кросс-спектрального анализа результаты — это также значения передаточной функции и функции когерентности спектра. Результаты анализа могут включать и данные периодограмм.

Амплитудно-частотная характеристика кросс-спектра, называемая также кросс-спектральной плотностью, представляет зависимость амплитуды взаимного спектра двух взаимосвязанных процессов от частоты. Такая характеристика наглядно показывает, на каких частотах наблюдается синхронные и соответствующие по величине изменения мощности в двух анализируемых временных рядах или где находятся области их максимальных совпадений и максимальных несовпадений.

Проиллюстрируем применение спектрально анализа на примере. Проанализируем волны экономической конъюнктуры в Европе в период начала индустриального развития. Для анализа используем не сглаженный временной ряд индексов цен на пшеницу, усредненных Бевериджем[3] по данным 40 рынков Европы за 370 лет с 1500 по 1869 г. Получим спектры

ряда и отдельных его отрезков продолжительностью 100 лет через каждые 25 лет.

Спектральный анализ позволяет оценить мощность каждой гармоники спектра. Наиболее мощными оказываются волны с 50-летним периодом, которые, как известно, были открыты Н. Кондратьевым1 и получили его имя. Анализ позволяет установить, что сформировались они не в конце XVII — начале XIX в., как полагают многие экономисты. Они сформировались с 1725 по 1775 г.

Модели авторегрессии

Построение моделей авторегрессии и проинтегрированного скользящего среднего (ARIMA) считаются полезными для описания и прогнозирования стационарных временных рядов и нестационарных рядов, обнаруживающих однородные колебания вокруг изменяющегося среднего значения.

Модели ARIMA представляют собой комбинации двух моделей: авторегрессии {AR) и скользящего среднего (moving average — МА).

Модели авторегрессии (AR) характерны тем, что текущее значение стационарного процесса выражается как конечная линейная комбинация предыдущих значений процесса и так называемого «белого шума».

Модели скользящего среднего (МА) представляют стационарный процесс в виде линейной комбинации последовательных значений так называемого «белого шума». Такие модели оказываются полезными как в качестве самостоятельных описаний стационарных процессов, так и в качестве дополнения к моделям авторегрессии для более детального описания шумовой составляющей.

Алгоритмы вычисления параметров модели МА очень чувствительны к неправильному выбору числа параметров для конкретного временного ряда, особенно в сторону их увеличения, что может выражаться в отсутствии сходимости вычислений. Рекомендуется не выбирать на начальных этапах анализа модель скользящего среднего с большим числом параметров.

Предварительное оценивание — первый этап анализа с использованием модели ARIMA. Процесс предварительного оценивания прекращается по принятию гипотезы об адекватности модели временному ряду или по исчерпанию допустимого числа параметров. В итоге результаты анализа включают:

  • • значения параметров авторегрессионой модели и модели скользящего среднего;
  • • для каждого шага прогнозирования указываются — среднее значение прогноза, стандартная ошибка прогноза, доверительный интервал прогноза для определенного уровня значимости;
  • • статистику оценки уровня значимости гипотезы не коррелированное™ остатков;
  • • графики временного ряда с указанием стандартной ошибки прогноза.

  • [1] Значительная часть материалов раздела ПЗ основана на положениях книг: Басовский Л.Е. Прогнозирование и планирование в условиях рынка. — М.: ИНФРА-М, 2008. Гилмор Р. Прикладная теория катастроф: В 2 кн. Кн. 1/ Пер. с англ. М.: Мир, 1984.
  • [2] Жан Батист Жозеф Фурье (Jean Baptiste Joseph Fourier; 1768—1830) — французский математик и физик.
  • [3] Николай Дмитриевич Кондратьев (1892—1938) — русский и советский экономист.
 
< Пред   СОДЕРЖАНИЕ     След >