МЕТОДЫ И ВАРИАНТЫ НАЧИСЛЕНИЯ ПРОЦЕНТОВ

В банковской практике существуют различные методы и способы начисления процентов. Например, смысл метода простых процентов заключается в том, что проценты начисляются все время на одну и ту же сумму — начальный долг (поэтому скорость начисления процентов постоянна). В отличие от этого, метод сложных процентов характеризуется фразой «начисление процентов на проценты». Это значит, что задолженность заемщика возрастает в геометрической прогрессии: задолженность в предыдущий момент времени служит основой для начисления процентов в следующий момент. Метод простых процентов используется прежде всего при краткосрочном кредитовании, когда один раз в квартал или другой срок, определенный кредитным договором, производится начисление процентов и выплата их кредитору. При этом общий объем платежей заемщика с учетом основной суммы долга составит:

5= Р ? (1 +«•/),

где ? — сумма выплат по кредиту с учетом первоначального долга; Р — первоначальный долг; п — срок пользования кредитом в днях к применяемой базе (360 или 365 дней); / — ставка процента.

Очень часто в банковской практике приходится производить операцию, обратную процедуре начисления процентов. Это имеет место, например, в случае обращения дисконтных векселей. Здесь при определении первоначального долга будет применяться следующая формула:

Р= 5: (1 + п • /): 360.

Предположим, банк выпустил вексель на следующих условиях: вексельная сумма по номиналу 100 млн руб. сроком на три месяца при условии уплаты 12% годовых. Сумма платежа в случае размещения векселя составит:

Р = 100 : (1 + 0,12 • 90) : 360 = 76,9 млн руб.

При процедуре учета векселей для определения суммы платежа до истечения срока их предъявления используется следующая формула:

5= Р( -с1) : 360,

где с/ — учетная ставка по векселю.

Например, банк учитывает вексель за 20 дней досрочно до установленной даты погашения обязательства. При этом вексельная сумма составляет 100 млн руб., а учетная ставка — 13% годовых. В этом случае сумма, по которой вексель учитывается, составит:

Р = 100 • (1 — 0,13-20): 360 = 93 млн руб.

В банковской практике возможно использование сложного процента, как правило, при долгосрочном кредитовании, когда начисленные суммы не выплачиваются кредитору до окончания сделки, а увеличивают основную сумму долга. В российской банковской практике метод начисления сложных процентов получил наибольшее распространение по вкладам частных лиц.

Предположим, что вкладчик положил в банк сумму 50 под процентную ставку /'. Тогда через год на его счету будет сумма 5(1) = = (1 + /)50. Если вкладчик решит не снимать деньги со счета, а снова их вложить с теми же условиями (реинвестировать), то уже через два года от даты совершения первого вклада на его счету будет сумма: 5(2) = (1 + /)51 = (1 + /)250. Продолжая в том же духе, за п лет вкладчик сможет получить сумму S(n) = (1 + /)л750.

Сумма вклада возрастает в геометрической прогрессии. Если обобщить этот пример, то можно сказать, что при использовании метода сложных процентов задолженность заемщика является показательной функцией от времени (показательная функция — это обобщение геометрической прогрессии): 5(0 = (1 + i)tS0.

Предположим, что вкладчик положил сумму 100 тыс. руб. все в тот же банк, предлагающий вклады под 10% годовых. Если банк использует метод сложных процентов для начисления процентов по вкладу, то через полгода на счету вкладчика будет сумма 5(12) = (1 +0,1) 12 • 100 000 = 104 881 руб. В этом и предыдущем примерах мы неявно полагали, что вклад на полгода имеет продолжительность 1/2 года. Если бы мы знали точные даты начала и окончания этой финансовой операции, то для получения правильного результата нам бы пришлось вычислять ее точную продолжительность в годах по методу «365/365».

Возможны различные варианты начисления процента: они определяются характером измерения количества дней пользования кредитом и продолжительностью года в днях (временной базы для расчета процентов). Так, число дней кредита может определяться точно или приближенно, когда продолжительность любого месяца признается равной 30 дням. Временная база приравнивается либо к фактической продолжительности года (365 или 366 дней), либо приближенно к 369 дням. Соответственно, применяют следующие варианты начисления сложных процентов.

  • 1. Точные проценты с фактическим числом дней кредита. Этот вариант дает самые точные результаты и применяется многими центральными и крупными коммерческими банками. Он характеризуется тем, что для расчета используется точное число дней кредита, временная база равняется фактической продолжительности года. Например, Р — сумма выданного кредита (100 000 руб.), / — ставка процента (9% годовых), Д — точное число дней кредита (260 дней). Наращенная сумма долга (5) составит: 5 = 100 000 • (1 + 0,09% х х 260 : 360) = 106 411 руб.
  • 2. Обыкновенные проценты с точным числом дней кредита. В этом случае, так же как и в предыдущем, для расчета берется точное число дней кредита, но временная база приравнивается к 360 дням. Если срок кредита превышает 360 дней, то сумма начисленных процентов будет больше, чем предусмотрено годовой ставкой (так, если период кредита равен 364 дням, то 364 : 360 — 1,011). Рассмотрим данный способ на предложенном выше примере: 52 = 100 000 • (1 + 0,09% • 260 : 360) = 106 499 руб.
  • 3. Обыкновенные проценты с точным числом дней кредита. Здесь продолжительность кредита в днях определяется приближенно, временная база равна 360 дням. Считается, что точное число дней кредита в большинстве случаев больше приближенного, поэтому и размер начисленных процентов с точным числом дней обычно больше, чем с приближенным.

В нашем примере приближенное число дней кредита равно 257 дням (53), учитывая это: 53 = 100 000 * (1 + 0,09% • 257 : 360) = = 106 424 руб.

Практика показывает, что второй вариант начисления процентов, а именно, обыкновенные проценты с точным числом дней кредита дает несколько больший результат относительно двух других вариантов, что необходимо иметь в виду кредитору при оформлении кредита (дополнительный алгоритм вычислений процентов приведен в Приложении 6 (?5 ).

Вопросы для самоконтроля

  • 1. Что такое процентная политика коммерческого банка?
  • 2. Перечислите внешние факторы, влияющие на процентную политику.
  • 3. Какие внутренние факторы влияют на процентную политику банка?
  • 4. Какие процентные ставки учитывает коммерческий банк при формировании своей процентной политики?
  • 5. Какие факторы влияют на процентные ставки по пассивным операциям коммерческого банка?
  • 6. Какие факторы влияют на процентные ставки по активным операциям коммерческого банка?
  • 7. Что такое фиксированная, плавающая процентная ставка?
  • 8. Какие процентные ставки применяются в зарубежной банковской практике?
  • 9. Какие межбанковские ставки применяются в российской банковской практике?
  • 10. Что представляет собой базовая процентная ставка и как она определяется?
  • 11. Что представляет собой процентная маржа и как она определяется?
  • 12. Опишите метод расчета простых и сложных процентов.
  • 13. Охарактеризуйте варианты начисления процентов.
 
< Пред   СОДЕРЖАНИЕ     След >