Меню
Главная
Авторизация/Регистрация
 
Главная arrow Информатика arrow Информационная безопасность предприятия

Основные положения теории систем

«Я считаю, что познать части без знания целого так же невозможно, как познать целое без знания его частей» (Блез Паскаль, 1623—1662).

Эти слова очень точно отражают суть теории систем. Но давайте по-порядку.

Начнем с определения системы. Система — совокупность или множество связанных между собой элементов. Под системой может пониматься естественное соединение составных частей, самостоятельно существующих в природе, а также нечто абстрактное, порожденное воображением человека. Такой подход к определению понятия системы заранее предлагает существование связей между ее элементами.

Всякая система состоит из взаимосвязанных и взаимодействующих между собой и с внешней средой частей и в определенном смысле представляет собой замкнутое целое. Система взаимодействует с внешней средой и может быть количественно оценена через свои входы и выходы (рис. 2.2).

Возмущения

  • 111
  • -

Входы

Выходы

  • -? -
  • 1ТI

Управляющие воздействия

Рис. 2.2. Общее представление системы

Входами могут быть (в общем смысле) перерабатываемое сырье, его количество, состав, температура и т. д.; выходами — количество готового продукта, его качество и т. п.

Обычно система подвержена возмущениям, для их компенсации, т. е. для того, чтобы система работала в заданном направлении, используют управляющие воздействия.

Система — это достаточно сложный объект, который можно разделить (провести декомпозицию) на составляющие элементы или подсистемы. Элементы связаны друг с другом и с окружающей средой объекта. Совокупность связей образует структуру системы. Система имеет алгоритм функционирования, направленный на достижение определенной цели.

Все системы можно условно разделить на малые и большие. Малые системы однозначно определяются свойствами процесса и обычно ограничены одним типовым процессом, его внутренними связями, а также особенностями функционирования. Большие системы представляют собой сложную совокупность малых (подсистем) систем и отличаются от них в количественном и качественном отношениях.

Рассмотрим составляющие системы и ее основные свойства.

Элементы — это объекты, части, компоненты системы. Причем их число ограничено.

Свойства — качества элементов, дающие возможность количественного описания системы, выражая ее в определенных величинах.

Связи — это то, что соединяет элементы и свойства системы в целое.

При анализе систем значительный интерес представляет изучение их структуры. Структура отражает наиболее существенные, устойчивые связи между элементами системы и их группами, которые обеспечивают основные свойства системы, т. е. структура — это форма организации системы. Структура системы может претерпевать определенные изменения в зависимости от факторов (причин) внутренней и внешней природы, от времени.

Понятие «состояние» обычно выявляют на основании исследования, ситуационного анализа, исследуя, например, входные воздействия и выходные результаты системы.

Поведение системы характеризует возможность устойчивого, контролируемого перехода системы из одного состояния в другое.

Понятие «равновесие» определяется как способность системы в отсутствие внешних воздействий сохранять заранее заданное состояние.

Устойчивость характеризуется как способность системы возвращаться в состояние равновесия после того, как она была выведена из него под влиянием внешнего воздействия. На рис. 2.3 схематично показана система в устойчивом (рис. 2.3, а) и не-

Состояния системы

Рис. 2.3. Состояния системы: а — устойчивое; б — неустойчивое

устойчивом (рис. 2.3, б) состояниях. Реально устойчивость систем может достигаться только в определенных пределах.

Понятие «развитие» характеризует совершенствование структуры и функций системы под влиянием внутренних факторов, в связи с чем поведение системы приобретает более упорядоченный и предсказуемый характер.

Главное свойство системы в том, что она приобретает особенности, не свойственные ее элементам. Здесь можно привести множество примеров: компьютер, как система, состоящая из определенного набора деталей и программного обеспечения. И если все собрано и отлажено правильно (организована система), то получаем новые качества входящих в эту систему элементов. Это свойство называется принципом эмерджентности.

Общая теория систем — междисциплинарная область научных исследований, в задачи которой входит разработка обобщенных моделей систем, построение методологического аппарата, описание функционирования и поведения системных объектов, рассмотрение динамики систем, их поведения, развития, иерархического строения и процессов управления в системах. Теория систем оперирует такими понятиями, как системный анализ и системный подход.

Системный анализ — это стратегия изучения сложных систем. В качестве метода исследования в нем используется математическое моделирование, а основным принципом является декомпозиция сложной системы на более простые подсистемы (принципы иерархии системы). В этом случае математическая модель строится по блочному принципу: общая модель подразделяется на блоки, которым можно дать сравнительно простые математические описания.

В основе стратегии системного анализа лежат следующие общие положения:

  • 1) четкая формулировка цели исследования;
  • 2) постановка задачи по реализации этой цели и определение критерия эффективности решения задачи;
  • 3) разработка развернутого плана исследования с указанием основных этапов и направлений решения задачи;
  • 4) последовательное продвижение по всему комплексу взаимосвязанных этапов и возможных направлений;
  • 5) организация последовательных приближений и повторных циклов исследований на отдельных этапах;
  • 6) принцип нисходящей иерархии анализа и восходящей иерархии синтеза в решении составных задач и т. п.

Системный анализ позволяет организовать наши знания об объекте таким образом, чтобы помочь выбрать нужную стратегию, либо предсказать результаты одной или нескольких стратегий, представляющихся целесообразными для тех, кто должен принимать решение.

С позиций системного анализа решаются задачи моделирования, оптимизации, управления и оптимального проектирования систем.

Особый вклад (важность) системного анализа в решении различных проблем заключается в том, что он позволяет выявить факторы и взаимосвязи, которые впоследствии могут оказаться весьма существенными, дает возможность спланировать методику наблюдений и построить эксперимент так, чтобы эти факторы были включены в рассмотрение, освещает слабые места гипотез и допущений. Как научный подход системный анализ создает инструментарий познания физического мира и объединяет его в систему гибкого исследования сложных явлений.

Системный подход — направление методологии научного познания и социальной практики, в основе которого лежит рассмотрение объектов как систем. Системный подход ориентирует исследование на раскрытие целостности объекта, на выявление разных личных типов связей в нем и сведение в единую теоретическую картину.

Системный подход основан на представлении о системе как о чем-то целостном, обладающем новыми свойствами (качествами) по сравнению со свойствами составляющих ее элементов. Новые свойства при этом понимаются очень широко. Они могут выражаться, в частности, в способности решать новые проблемы или достигать новые цели. Для этого требуется определить границы системы, выделив ее из окружающего мира, и затем соответствующим образом изменить (преобразовать) или, говоря математическим языком, перевести систему в желаемое состояние. Академик В. М. Глушков выделил в системном подходе следующие этапы [15].

  • 1. Постановка задачи (проблемы): определение объекта исследования, постановка целей, задание критериев для изучения объекта и управления им.
  • 2. Очерчивание границ изучаемой системы и ее (первичная) структуризация. На этом этапе вся совокупность объектов и процессов, имеющих отношение к поставленной цели, разбивается на два класса — собственно изучаемая система и внешняя среда.
  • 3. Составление математической модели изучаемой системы: параметризация системы, задание области определения параметров, установление зависимостей между введенными параметрами.
  • 4. Исследование построенной модели: прогноз развития изучаемой системы на основе ее модели, анализ результатов моделирования.
  • 5. Выбор оптимального управления.

Выбор оптимального управления как раз и позволяет перевести систему в желаемое (целевое) состояние и тем самым решить проблему.

Несмотря на четкую математическую трактовку системного подхода, он не получил, однако, однозначной практической интерпретации. В связи с этим развивается несколько направлений его практической реализации. Наибольшее распространение получили автоматизированные системы управления (АСУП) и системотехнические направления, суть которых заключается в совершенствовании существующих систем управления. Для этого проводится их обследование (диагностический анализ), выявляются недостатки и пути устранения последних, формируются мероприятия по совершенствованию систем, разрабатываются проекты систем, внедрение которых рассматривается как способ преобразования существующих систем управления.

Значительную роль в этих методах играют понятия системы, подсистемы, окружающей среды, классификация основных свойств и процессов в системах, классификация систем и т. д.

Остановимся на обобщенном определении системы.

Система, с одной стороны, может быть описана динамически как процесс, а с другой, — статически, с точки зрения либо внешних, либо внутренних характеристик.

Кроме того, внутреннее строение системы может быть представлено в виде функциональных зависимостей и структуры, реализующей эти зависимости.

Таким образом, можно выделить пять основных системных представлений: процессуальное, функциональное, макроскопическое, иерархическое и микроскопическое.

В процессуальном плане система рассматривается динамически как процесс, остальные системные представления отражают ее статический аспект.

В макроскопическом представлении описываются внешние характеристики системы, в функциональном, иерархическом и микроскопическом — внутренние.

Микроскопическое представление системы основано на понимании ее как совокупности взаимосвязанных элементов, не разложимых далее «кирпичиков». Центральным понятием микроскопического системного представления является понятие элемента. Конечно, в общем виде элемент лишь относительно неделим, однако для данной системы он является абсолютно неделимым. Элементы также могут быть рассмотрены как системы, но это будут системы другого типа по отношению к исследуемой. Кроме того, система понимается как совокупность разнородных элементов, которые могут различаться по принципу действия, техническому исполнению и ряду других характеристик. Система сводится к ансамблю простых частей.

Элементы системы обладают связями, которые объединяют их в целостную систему. Элементы могут существовать только в «связанном» виде — между элементами обязательно устанавливаются связи.

Например, в электрической цепи, если по ней не течет ток, нет электрических связей, следовательно, нет и элементов; когда цепь подключена к источнику электрической энергии, в ней образуются реальные электрические связи и можно говорить о существовании элементов, которые они связывают.

Элементы в системе обязательно взаимодействуют, в результате одни свойства (переменные) изменяются, другие остаются неизменными (константы). Важную роль в системных исследованиях играет поиск системообразующих связей, благодаря которым все элементы системы оказываются связанными воедино.

Функциональное представление системы связано с пониманием системы как совокупности функций (действий) для достижения определенной цели. Каждый элемент в системе выполняет определенную функцию. Синонимом понятия «структура» для функционального представления служит понятие функциональной структуры, или организации. Организация может быть реализована различными структурами (при этом функциональная сущность системы остается той же, меняется только способ реализации).

Для макроскопического представления характерно понимание системы как нерасчленимого целого. Здесь важно понятие системного окружения.

Под окружающей средой системы понимается совокупность всех объектов, изменение свойств которых влияет на систему и на которые влияет изменение свойств системы. Ни одна система объектов не может быть рассмотрена вне системного окружения. Системное окружение позволяет охарактеризовать систему как множеством внешних связей (или внешней структурой), так и совокупностью внешних отношений.

Иерархическое представление системы (как иерархической упорядоченности) основано на понятии «подсистема», или «единица», которое следует отличать от понятия «элемент». Единицы обладают функциональной спецификой целого (системы). Система может быть представлена в виде совокупности единиц, составляющих системную иерархию. (Единица может быть разложена на элементы.)

Можно выделить два типа функциональных связей между единицами системной иерархии: горизонтальные — между единицами одного уровня и вертикальные — между единицами различных уровней. Единицы каждого уровня описываются набором вертикальных и горизонтальных связей.

Процессуальное представление системы предполагает понимание системного объекта как совокупности процессов, характеризуемых последовательностью состояний во времени. Основным понятием здесь является понятие периода жизни — временного интервала, в течение которого функционирует данный процесс.

Система защиты информации — это система социотехниче-ская. Она характеризуется рядом признаков.

СЗИ — это система:

  • • искусственная, т. е. создана человеком;
  • • материальная, что подразумевает не только объективность ее существования, но и тот или иной уровень материальных и финансовых затрат на реализацию;
  • • открытая, т. е. возможно ее расширение;
  • • динамическая; подвержена старению, развитию, движению, прогрессу и регрессу, делению, слиянию и т. д.;
  • • вероятностная; характеризуется вероятностями структуры, функции, целей, задач, ресурсов.

Очень важно, рассматривая теорию систем, не забывать о ее связи с проектированием. Даже хорошо работающие компоненты, соединенные вместе, не обязательно составляют хорошо функционирующую систему. В сложной системе часто оказывается, что даже если отдельные компоненты удовлетворяют всем необходимым требованиям, система как целое не будет работать. Для иллюстрации рассмотрим пример проектирования самолета специалистами разного профиля. Если рассмотреть данную систему с точки зрения специалиста по двигателям, то, например, для электронного оборудования в ней совсем не останется места. Проектировщик фюзеляжа будет заботиться только об оптимальной конфигурации самолета, пренебрегая расположением антенны. Инженер-психолог потребует массу удобств для летчика, не считаясь с затратами. Плановик сведет до минимума затраты... И самолет никогда не полетит.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Пред   СОДЕРЖАНИЕ   След >
 
Популярные страницы