ФОРМЫ И СПОСОБЫ ВЫРАЖЕНИЯ ХИМИЧЕСКОГО СОСТАВА ПОДЗЕМНЫХ ВОД

Основными задачами химического анализа подземных вод в практике гидрогеологических исследований являются:

  • • изучение закономерностей формирования и распространения подземных вод различного состава;
  • • оценка состава и свойств подземных вод для питьевого, технического, сельскохозяйственного, лечебного и других видов исследования;
  • • исследования подземных вод как критерии при поисках месторождений полезных ископаемых — нефти, газа, солей, различных руд;
  • • оценка подземных вод как химического сырья для получения йода, брома, бора и других элементов.

Существует четыре типа химических анализов подземных вод: полевой, сокращенный, полный и специальный.

Полевой анализ наиболее прост, он применяется для предварительной характеристики подземных вод района. Его проводят в полевых условиях в походных гидрохимических лабораториях, часто упрощенными методами. При полевом анализе определяют: физические свойства воды, ее pH, наличие СГ, S04_, NO3, HCOj, СО2-, общую жесткость, присутствие Са2+, Fe2+, Fe3+, NH4, N02, С02своб; вычисляют: Na+ + К+, карбонатную жесткость, Mg2+ и общую минерализацию.

Сокращенный анализ. Этот анализ производят более точными методами в стационарных лабораториях. При сокращенном анализе определяют: физические свойства воды, величину pH, содержание ионов и компонентов (СГ, S04~, NOj, НСО3, CO2-, Na+, К+,

Ca2+, Mg2+, Fe2+, Fe3+, NH4, N02, свободную и агрессивную углекислоту С02, Si02, окисляемость, сухой остаток, жесткость общую, карбонатную и некарбонатную.

Полный анализ применяется для подробной характеристики химического состава подземных вод. Он производится наиболее точными методами в стационарных лабораториях. Анализ позволяет произвести контроль определений как по сухому остатку, так и по суммам мг-экв катионов и анионов. При полном анализе определяют: физические свойства воды, ее pH, наличие СГ, SO4-, NO3, HCOJ, СО32-, Na+, К+, Са2+, Mg2+, Fe2+, Fe3+, NHj, NOJ, С02своб и C02 arpec, Si02, окисляемость, сухой остаток; вычисляют: жесткость общую, карбонатную и некарбонатную, С02 агрес.

Специальный анализ. Помимо характеристик, определяемых при перечисленных выше типах анализа, этот анализ включает установление специальных показателей (микрокомпонентов, органических веществ, газов, Eh и др.) по особому заданию в соответствии с целевым назначением исследований. Количество отбираемой для анализа воды зависит от точности и чувствительности анализа и минерализации воды. Чем выше требования к чувствительности и точности анализа, тем больше должен быть объем пробы; пресные и слабо минерализованные воды отбирают в больших объемах, чем сильно минерализованные. При полевом анализе обычно бывает достаточно 0,5 л воды, при сокращенном — от 0,5 до 1,0 л (в зависимости от минерализации), а при полном — от 1,0 до 2,0 л. Для определения неустойчивых (изменяющихся во времени) компонентов — С02, H2S, 02, Fe и др. — применяют специальные методы отбора и хранения проб.

Результаты химического анализа воды выражают в массовых количествах веществ, растворенных в 1 л (или в 1 кг воды), в эквивалентных количествах или в процент-эквивалентных количествах (%-экв) воды. В гидрогеологической практике принято массовые количества компонентов выражать в миллиграммах на 1 л (мг/л), а эквивалентные количества ионов — в миллиграмм-эквивалентах (мг-экв) каждого иона в 1 л воды.

Величину сухого (плотного) остатка получают взвешиванием пробы после выпаривания воды. Сумму ионов определяют суммированием массы всех ионов, содержащихся в исследуемой воде. Сумма минеральных веществ — более полное выражение, чем сумма ионов, так как она учитывает и недиссоциированные неорганические вещества Si02 и Fe203.

В настоящее время принята ионная форма выражения химических анализов воды. Данные лабораторных анализов подземных вод, выраженные в мг/л, подвергаются дальнейшей обработке (табл. 7.1).

Таблица 7.1

Результаты химического анализа подземных вод

Анионы

Содержание

Катионы

Содержание

мг/л

мг-экв/л

%

мг/л

мг-экв/л

%

СГ

124,5

3,51

36

Са2+

88,6

4,42

45

SO^

83,0

1,73

17

Mg2+

24,4

2,01

21

нсоз

276,3

4,52

47

Na+

76,6

3,93

34

Сумма

483,8

9,76

100,0

Сумма

189,6

9,36

100

Разнообразие химического состава подземных вод вызывает необходимость в их систематизации. Существуют различные формы и множество способов наглядного изображения химического состава вод (графики, формулы, коэффициенты и т.п.).

Формула Курлова. Принцип этой формулы — изображение содержащихся в воде ионов в убывающем порядке в виде псев- додроби, в числителе которой записаны анионы, а в знаменателе — катионы. Слева от дроби формулы приводятся следующие показатели: SP — микроэлементы (Br, I, As) и свободные газы (С02 и др.), мг/л, а также общая минерализация воды М в г/л; справа — pH, температура воды t и дебит D [14, 21].

Ионы, содержание которых в воде менее 10%, в формуле не указываются, однако некоторые исследователи считают, что следует указывать все ионы, входящие в состав подземных вод. В общем виде формула Курлова имеет вид:

Например, паспорт воды знаменитого кисловодского нарзана по формуле Курлова будет иметь следующий вид:

Формула Курлова была предложена в 1928 г., а затем претерпела некоторые изменения. Наиболее рациональным представляется вариант этой формулы, предложенный И.Ю. Соколовым в 1970 г. Он заключается в следующем.

  • 1. В левой части формулы записывают (в мг/л) содержание газов, а затем микрокомпонентов, если их количество превышает норму для отнесения подземных вод к минеральным или представляет геохимический интерес.
  • 2. Далее указывают величину минерализации воды М в виде дроби: в числителе — в г/л, с точностью до одного десятичного знака, в знаменателе — в эквивалентной форме, выраженной в мг-экв/л суммы анионов.
  • 3. В знаменателе псевдодроби записывают в нисходящем порядке все катионы, в числителе — анионы, содержание которых составляет более 1%-экв (с точностью до целых процентов).
  • 4. После псевдодроби указывают показатели, характеризующие состояние воды (pH и Eh) и ее температуру, а также перманга- натную окисляемость (в мг О/л). Для сильно минерализованных вод и рассолов в конце формулы проставляют плотность воды.

Формула Курлова позволяет полно отразить все важнейшие химические характеристики исследуемой воды и при этом считать эквивалентное и массовое содержание найденных при анализе ионов. Наименование воды по ее ионному составу, т.е. чтение этой формулы, согласно ГОСТу 13273—73 на минеральные воды таково: сначала называют подчиненные ионы, потом — преобладающие. Так, название воды, записанное в виде приведенной выше формулы, следующее: сульфатно-гидрокарбонатная, кальциево-натриевая вода (в названии обычно учитывают два катиона и два аниона или ионы, содержание которых равно или превышает 25%-экв).

Жесткость. Для пресной воды различают общую, временную (или устранимую) и постоянную жесткость. Общая жесткость обусловлена суммарным содержанием в воде ионов Са2+ и Mg2+. Временную (устранимую) жесткость придают воде карбонаты кальция и магния, осаждающиеся при кипячении воды в виде накипи вследствие разрушения гидрокарбонат-иона:

Разность между общей и временной жесткостью называют постоянной жесткостью, она связана с присутствием сульфатов и галоидов кальция и магния. В настоящее время в России принято выражать жесткость в мг-экв/л (1 мг-экв/л соответствует содержанию 20,04 мг/л Са2+ или 12,16 мг/л Mg2+).

Для графического изображения химического состава вод пользуются различными геометрическими фигурами (квадратом, треугольником и т.д.), на сторонах которых откладываются преобладающие шесть катионов и анионов, а также различными химическими формулами, например, формулой Курлова, которую часто называют паспортом подземных вод (рис. 7.2).

Способы графического изображения химического состава воды [20, 21]

Рис. 7.2. Способы графического изображения химического состава воды [20, 21]:

I, II — графики-прямоугольники (соответственно без учета и с учетом минерализации); III — график-круг; IV, V — графики-треугольники (соответственно катионного и анионного состава); 7 — К+; 2 — Na+; 3 — Mg2+; 4 — Са2+; 5 — NOj; 6 — Cl-;

7 — SO4-; 8 — HCOj

К основным видам гидрогеохимической графики относятся гидрогеохимические карты, профили, колонки, разрезы, которые позволяют комплексно изучать гидрохимический режим подземных вод и выявлять определенные закономерности формирования химического состава подземных вод.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >