ОПРЕДЕЛЕНИЕ СРЕДНИХ ОШИБОК ВЫБОРКИ
Средняя ошибка выборочной средней обозначается рх и определяется по вариации количественного признака (хр х2,..., хп) по следующим формулам:
• для повторного отбора:
• для бесповторного отбора:
где
— дисперсия признака,
п — численность выборочной совокупности;
N — численность генеральной совокупности.
Средняя ошибка выборочной доли определяется по показателям качественного или альтернативного признака.
Альтернативным называется признак, которым обладают одни единицы совокупности и не обладают другие. Если п обозначает число единиц всей выборочной совокупности, am — число единиц из этой совокупности, обладающих определенным признаком, то их
отношение со = — будет обозначать выборочную долю, или частость, п
Средняя ошибка выборочной доли определяется по следующим формулам:
• для повторного отбора:
• для бесповторного отбора:
ОПРЕДЕЛЕНИЕ ПРЕДЕЛЬНЫХ ОШИБОК ВЫБОРКИ
Ошибка выборки, исчисленная с заданной степенью вероятности, называется предельной ошибкой выборки, обозначается знаком А (дельта) и определяется по общей формуле как для количественных, так и для качественных признаков:
где t — коэффициент доверия, который определяется по Таблице значений заданных вероятностей X, вычисленных для различных значений t.
При заданной доверительной вероятности X = 0,954, t = 2; при заданной доверительной вероятности X = 0,997, t = 3. Предельная ошибка выборки для количественного признака выборки определяется по формулам:
• для повторного отбора:
• для бесповторного отбора:
Предельная ошибка выборки для качественного признака выборки определяется по формулам:
• для повторного отбора:
• для бесповторного отбора: