Меню
Главная
Авторизация/Регистрация
 
Главная arrow Статистика arrow Общая теория статистики

СРЕДНИЕ ВЕЛИЧИНЫ И ПОКАЗАТЕЛИ ВАРИАЦИИ

Средние величины

В статистике средней величиной называют обобщающий показатель совокупности однородных общественных или природных явлений, который показывает типичный уровень варьирующего признака в расчете на единицу совокупности в конкретный момент времени.

Нахождение среднего — один из распространенных приемов обобщения. Средняя величина отражает то общее, что типично (характерно) для всех единиц изучаемой совокупности, но в то же время она игнорирует различия отдельных единиц. Мы уже говорили, что при неограниченном увеличении количества наблюдений (п —» оо) средняя величина, согласно закону больших чисел, будет неограниченно приближаться к его математическому ожиданию, т. е. при п —> оо можно записать х ~ М[Х], здесь х — средняя величина. То есть средняя величина — это оценка математического ожидания.

Сделаем небольшое отступление и приведем краткие сведения об оценках параметров, полученных в результате п опытов. Предположим, что надо определить по результатам п опытов некоторый параметр d. Приближенное значение этого параметра будем называть его оценкой и обозначим d. Оценка d должна удовлетворять ряду требований, чтобы в каком-то смысле быть оценкой “доброкачественной”.

Оценка d при увеличении числа опытов должна сходиться по вероятности к искомому параметру, т. е.

при

Оценка, обладающая таким свойством, называется состоятельной.

Кроме того, пользуясь оценкой d вместо самого параметра d, желательно не делать систематической ошибки, т. е. математическое ожидание оценки должно быть равным самому параметру:

Оценка, которая обладает данным свойством, называется несмещенной.

Было бы хорошо, если бы выбранная несмещенная оценка d была как можно менее случайной, т. е. обладала по сравнению с другими минимальной дисперсией:

Оценка, которая обладает данным свойством, называется эффективной.

В реальных условиях не всегда удается удовлетворить всем перечисленным требованиям. Тем не менее при выборе оценки любого параметра желательно эту оценку рассмотреть со всех перечисленных точек зрения.

Вернемся к средним величинам. При их вычислении при большом количестве наблюдений случайности взаимопога- шаются (это следует из закона больших чисел), следовательно, можно абстрагироваться от несущественных особенностей изучаемого явления и от количественных значений признака в каждом конкретном опыте.

Крупный вклад в обоснование и развитие теории средних величин внес А. Кетле. Согласно его учению массовые процессы формируются под влиянием двух групп причин. К первой группе общих для всех единиц массовой совокупности причин относятся те из них, которые определяют состояние массового процесса. Они формируют типичный уровень для единиц данной однородной совокупности.

Вторая группа причин формирует специфические особенности отдельных единиц массовой совокупности и, следовательно, их разброс от типичного уровня.

Эти причины не связаны с природой изучаемого явления, поэтому их называют случайными причинами.

Средняя величина, полученная по всей совокупности, называется общей, а средние величины, вычисленные по каждой группе, называются групповыми средними. Есть два вида средних величин: степенные средние (средняя арифметическая и др.), структурные средние (мода, медиана).

Рассмотрим степенные средние. Степенные средние определяются исходя из формулы

где х — среднее значение;

х{ — текущее значение изучаемого признака;

т — показатель степени средней;

п — количество признаков (вариант).

В зависимости от показателя т степени средней получаем следующие виды степенных средних:

- среднюю гармоническую хгар, если т = -1;

- среднюю геометрическую эсгеом, если т = 0;

- среднюю арифметическую хар, если т = 1;

- среднюю квадратическую хквад, если т = 2;

- среднюю кубическую хкуб., если т = 3,

- ИТ. д.

При использовании одних и тех же данных чем больше т в формуле (6.4), тем больше значение средней, т. е.

Приведем конкретные формулы для вычисления некоторых видов степенных средних.

При т = -1 получаем среднюю гармоническую:

В том случае, если исходные данные сгруппированы, используются взвешенные средние. В качестве веса может использоваться частота р (количество опытов, в которых появилось интересующее нас событие) или относительная частота

Запишем формулы для взвешенной средней гармонической:

При т = 0 получаем среднюю геометрическую:

т. е. получили неопределенность.

Для ее раскрытия прологарифмируем обе части формулы (6.4.)

затем подставляем т = 0 и получаем

т. е. имеем неопределенность вида Для раскрытия этой неопределенности применяем правило Лопиталя. Полученный результат потенцируется, и окончательно получаем

Широкое применение средняя геометрическая получила для нахождения средних темпов изменения в рядах динамики и в рядах распределения.

Запишем формулы для взвешенной средней геометрической.

Приведем конкретный пример нахождения средней геометрической взвешенной по формуле (6.11).

Пример 6.1

Исходные данные наблюдений приведены в табл. 6.1.

Таблица 6.1

X.

2

3

4

5

р,

5

4

7

8

/?

0,21

0,17

0,29

0,33

В табл. 6.1 х. — результаты, принятые некоторой случайной величиной X в г-м опыте; р. — частота события — показывает, сколько раз в результате всех опытов появилось интересующее нас событие. Например, х = 2 появилось в 24 опытах 5 раз.

— относительная частота события (частость).

По формуле (6.11) получаем:

По формуле (6.12) имеем

При т = 1 получаем среднюю арифметическую:

Средняя арифметическая — наиболее распределенный вид среди всех видов степенных средних. Она используется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных единиц.

Приведем формулы для нахождения средней арифметической взвешенной:

При большом количестве наблюдений, согласно закону больших чисел, формула (6.15) определяет оценку математического ожидания т. е.

При т = 2 получаем среднюю квадратическую:

Она используется для вычисления среднего размера признака, выраженного в квадратных единицах.

Формулы для нахождения средней квадратической взвешенной имеют вид:

При га = 3 получаем среднюю кубическую:

Она применяется для нахождения среднего размера признака, выраженного в кубических единицах.

Формулы для вычисления средней кубической взвешенной имеют вид:

Теперь рассмотрим структурные средние: моду и медиану. В статистике, в отличие от теории вероятностей, имеем дело с оценками этих величин. Мы будем обозначать их теми же буквами, что и в главе 2, но с тильдой.

Мода в статистике (Мо) — значение случайной величины, которое встречается в статистическом ряду распределения чаще всего, т. е. имеет наибольшую частоту или относительную частоту (частость).

Например, в табл. 6.1 наибольшая относительная частота / = 0,33, поэтому мода равна Мо = 5.

Если мы имеем группированный ряд распределения с равными интервалами, то моду можно найти по формуле

где Монижн — нижняя граница модального интервала;

гМо — длина модального интервала;

Рмо — частота модального интервала;

М-мо_, — частота интервала, предшествующего модальному;

М-мо+1 —- частота интервала, следующего за модальным.

Заметим, что для расчета можно использовать и относительные частоты.

Медиана в статистике — варианта, которая находится в середине ранжированного ряда распределения, т. е. значение медианы находиться по ее порядковому номеру.

Если ряд распределения имеет нечетное число элементов, номер медианы находиться по формуле

Например, в табл. 6.2 приведены величины окладов профессорско-преподавательского состава кафедры высшей математики.

Таблица 6.2

Должность

Ассистент

Преподаватель

Ст. преподаватель

Доцент

Профессор

Оклад (руб.)

2000

4000

5000

7000

9000

Количество элементов ряда равно 5, поэтому по формуле (6.23) находим номер медианы , следовательно, меди

ана в данном случае равна

Если ряд содержит четное число элементов, то варианта находится как средняя из двух вариант, находящихся в середине ряда.

В группированном ряду распределения медиана (так как она делит всю совокупность на две равные части) находится в каком-то из интервалов.

Кумулятивная (накопленная) частота (или относительная частота) равна или превышает полусумму всех частот ряда (для относительных частот она равна 1/2 или превышает 1/2).

В этом случае значение медианы вычисляется по формуле

где — нижняя граница медианного интервала;

— длина медианного интервала;

— полусумма частот;

— сумма частот, накопленная до начала медианного интервала;

— частота медианного интервала.

 
Посмотреть оригинал
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
 
Популярные страницы