ВЫБОР ОПТИМАЛЬНОГО ПЛАНА МЕТОДОМ ПОСТРОЕНИЯ ДЕРЕВЬЕВ СОБЫТИЙ

Дерево решений

Специфическим графическим инструментом анализа проблемных ситуаций являются, так называемые, деревья решений. Термин получил свое название от древообразующей структуры схемы.

С помощью этого метода решается целый ряд задач, когда имеются два или более последовательных множества решений, причем, последующие решения основываются на результатах предыдущих состояний среды, т.е. появляется цепочка решений, вытекающих одно из другого. Подобные задачи проще решать с использованием дерева решений, которое представляет собой графическое изображение последовательности решений и состояний среды с указанием соответствующих вероятностей и выигрышей для всевозможных комбинаций.

Для упрощения применения этого метода разобьем его на несколько этапов.

На первом этапе формулируем задачу. Отбрасываем не относящиеся к проблеме факторы, а оставшиеся подразделяем на существенные и несущественные. Далее: определяем возможности сбора информации для экспериментирования и реальных действий; составляем перечень событий, которые с определенной вероятностью могут произойти: устанавливаем временной порядок расположения событий, в исходах которых содержится полезная и доступная информация, и тех последовательных действий, которые можно предпринять.

На втором этапе строим дерево решений. Оно состоит из двух основных частей: «решений» и «вероятностных событий». Они представлены квадратами (рис. 6.1). Эти решения и вероятностные события связаны, что видно из последующих примеров.

Составные части дерева решений

Рис. 6.1. Составные части дерева решений

Суть третьего этапа состоит в оценке вероятностей состояний среды, т.е. сопоставлении шансов возникновения каждого конкретного события.

Установление выигрышей (или проигрышей, как выигрышей со знаком минус) для каждой возможной комбинации альтернатив (действий) состояний среды составляют четвертый этап.

На пятом этапе решается задача.

Дерево решений состоит из ряда узлов и исходящих из них ветвей. Квадраты обозначают пункты принятия решений (или возможные события), а дуги соответствуют переходам между логически связанными решениями и случайными событиями. Из вершин — решения (квадратов) исходит столько дуг, сколько имеется вариантов (альтернатив), выбор конкретной дуги (вариант решения) осуществляется ЛПР. Из вершины — события также может исходить несколько дуг. Но здесь уже выбор осуществляется случайным образом в соответствии с заданными вероятностями отдельных исходов.

После того, как дерево решения построено, оно анализируется справа налево, т.е. начинать надо с последнего принятого решения. Для каждого решения выбирается альтернатива с наибольшим показателем отдачи (или с наименьшими затратами). Если за принятием решения следует несколько возможных вариантов событий, то выбирается альтернатива с наибольшей предполагаемой прибылью (или с наименьшей предполагаемой величиной затрат).

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >