Меню
Главная
Авторизация/Регистрация
 
Главная arrow Философия arrow История и философия науки (Философия науки)

Развитие представлений о Вселенной. Модели Вселенной

Исторически представления о Вселенной всегда развивались в рамках мысленных моделей Вселенной, начиная с древних мифов. В мифологии практически любого народа значительное место занимают мифы о Вселенной — ее происхождении, сущности, структуре, взаимосвязях и возможных причинах конца [2].

В большинстве древних мифов мир (Вселенная) не вечен, он создан высшими силами из некой первоосновы (субстанции), обычно из воды или из хаоса. Время в древних космогонических представлениях чаще всего циклично, т.е. события рождения, существования и гибели Вселенной следуют друг за другом по кругу, подобно всем объектам в природе. Вселенная представляет собой единое целое, все ее элементы связаны между собой, глубина этих связей различна вплоть до возможных взаимопревращений, события следуют друг за другом, сменяя друг друга (зима и лето, день и ночь). Этот мировой порядок противопоставляется хаосу. Пространство мира ограниченно. Высшие силы (иногда боги) выступают или творцами Вселенной или хранителями мирового порядка. Структура Вселенной в мифах предполагает многослойность: наряду с явленным (срединным) миром присутствуют верхний и нижний миры, ось Вселенной (часто в виде Мирового древа или горы), центр мира — место, наделенное особыми сакральными свойствами, существует связь между отдельными слоями мира. Существование мира мыслится регрессивно — от «золотого века» к упадку и гибели. Человек в древних мифах может быть аналогом всего Космоса (весь мир создан из гигантского существа, подобного человеку-великану), что укрепляет связь человека и Вселенной. В древних моделях человек никогда не занимает центрального места.

В VI—V вв. до н.э. создаются первые натурфилософские модели Вселенной, наиболее разработанные в Древней Греции [6]. Предельным понятием в этих моделях выступает Космос как единое целое, прекрасное и законосообразное. Вопрос, как образовался мир, дополняется вопросом, из чего устроен мир, как он изменяется. Ответы формулируются уже не образным, а абстрактным, философским языком. Время в моделях чаще всего носит еще циклический характер, но пространство — конечно. В качестве субстанции выступают как отдельные стихии (вода, воздух, огонь — в Милетской школе и у Гераклита), смесь стихий, так и единый, неделимый неподвижный Космос (у элеатов), онтологи- зированное число (у пифагорейцев), неделимые структурные единицы — атомы, обеспечивающие единство мира, — у Демокрита. Именно модель Вселенной Демокрита бесконечна в пространстве. Натурфилософы определяли статус космических объектов — звезд и планет, различия между ними, их роль и взаиморасположение во Вселенной. В большинстве моделей существенную роль играет движение. Космос построен по единому закону — Логосу, этому же закону подчинен и человек — микрокосм, уменьшенная копия Космоса.

Развитие пифагорейских взглядов, геометризующих Космос и впервые четко представивших его в виде сферы, вращающейся вокруг центрального огня и им же окруженного, получило воплощение в поздних диалогах Платона. Логической вершиной взглядов античности на Космос долгие века считалась модель Аристотеля, математически обработанная Птолемеем. В несколько упрощенном виде эта модель, поддерживаемая авторитетом церкви, просуществовала около 2 тыс. лет. По Аристотелю, Вселенная:

О есть всеобъемлющее целое, состоящее из совокупности всех воспринимаемых тел;

О единственна в своем роде;

О пространственно конечна, ограничена крайней небесной сферой, за ней же «нет ни пустоты, ни места»;

О вечна, безначальна и бесконечна во времени. При этом Земля неподвижна и находится в центре Вселенной, земное и небесное (надлунное) абсолютно противоположны по своему физико-химическому составу и характеру движения.

В XIV—XVI вв., в эпоху Возрождения, вновь возникают натурфилософские модели Вселенной. Они характеризуются, с одной стороны, возвращением к широте и философичности взглядов античности, а с другой — строгой логикой и математикой, унаследованной от Средневековья. В результате теоретических изысканий Николай Кузанский, Н. Коперник, Дж. Бруно предлагают модели Вселенной с бесконечным пространством, необратимым линейным временем, гелиоцентрической Солнечной системой и множеством миров, подобных ей. Г. Галилей, продолжая эту традицию, исследовал законы движения — свойство инерции и первым сознательно использовал мысленные модели (конструкты, позже ставшие основой теоретической физики), математический язык, который он считал универсальным языком Вселенной, сочетание эмпирических методов и теоретической гипотезы, которую опыт должен подтвердить или опровергнуть, и, наконец, астрономические наблюдения с помощью телескопа, значительно расширившие возможности науки.

Г. Галилей, Р. Декарт, И. Кеплер заложили основы современных физических и космогонических представлений о мире, и на их базе и на базе открытых Ньютоном законов механики в конце XVII в. сложилась первая научная космологическая модель Вселенной, получившая название классической ньютоновской. Согласно этой модели, Вселенная:

О статична (стационарна), т.е. в среднем неизменна во времени;

О однородна — все точки ее равноправны;

О изотропна — равноправны и все направления;

О вечна и пространственно бесконечна, причем пространство и время абсолютны — не зависят друг от друга и от движущихся масс;

О имеет отличную от нуля плотность материи;

О имеет структуру, вполне постигаемую на языке наличной системы физического знания, что означает бесконечную экстраполиру- емость законов механики, закона всемирного тяготения, которые являются основными законами для движения всех космических тел.

Кроме того, во Вселенной применим принцип дальнодействия, т.е. мгновенное распространение сигнала; единство Вселенной обеспечивается единой структурой — атомарным строением вещества.

Эмпирической базой данной модели служили все полученные в астрономических наблюдениях данные, для их обработки использовался современный математический аппарат. Эта конструкция опиралась на детерминизм и материализм рационалистической философии Нового времени [9]. Несмотря на обнаружившиеся противоречия (фотометрический и гравитационный парадоксы — следствия экстраполяции модели на бесконечность), мировоззренческая привлекательность и логическая непротиворечивость, а также эвристический потенциал делали ньютоновскую модель единственно приемлемой для космологов вплоть до XX в.

К необходимости пересмотра взглядов на Вселенную подтолкнули многочисленные открытия, сделанные в XIX и XX вв.: наличие давления света, делимость атома, дефект масс, модель строения атома, неплоские геометрии Римана и Лобачевского, однако только с появлением теории относительности стала возможной новая квантово-релятивистская модель Вселенной.

Из уравнений специальной (СТО, 1905 г.) и общей (ОТО, 1916 г.) теории относительности А. Эйнштейна следует, что пространство и время связаны между собой в единую метрику, зависят от движущейся материи: при скоростях, близких к скорости света, пространство сжимается, время растягивается, а вблизи компактных мощных масс пространство-время искривляется, тем самым модель Вселенной геометризируется. Были даже попытки представить всю Вселенную как искривленное пространство-время, узлы и дефекты которого интерпретировались как массы.

Эйнштейн, решая уравнения для Вселенной, получил модель, ограниченную в пространстве и стационарную. Но для сохранения стационарности ему потребовалось ввести в решение дополнительный лямбда-член, эмпирически ничем не подкрепленный, по своему действию эквивалентный полю, противостоящему гравитации на космологических расстояниях. Однако в 1922—1924 гг. А.А. Фридман предложил иное решение этих уравнений, из которого вытекала возможность получения трех различных моделей Вселенной в зависимости от плотности материи, но все три модели были нестационарными (эволюционирующими) — модель с расширением, сменяющимся сжатием, осциллирующая модель и модель с бесконечным расширением. В то время отказ от стационарности Вселенной был поистине революционным шагом и воспринимался учеными с большим трудом, так как казался противоречащим всем устоявшимся научным и философским взглядам на природу, неизбежно ведущим к креацианизму [5].

Первое экспериментальное подтверждение нестационарное™ Вселенной было получено в 1929 г. — Хаббл открыл красное смещение в спектрах удаленных галактик, что, согласно эффекту Доплера, свидетельствовало о расширении Вселенной (такую интерпретацию разделяли тогда далеко не все космолога). В 1932— 1933 гг. бельгийский теоретик Ж. Леметр предложил модель Вселенной с «горячим началом», так называемым «Большим взрывом». Но еще в 1940-е и в 1950-е гг. предлагались альтернативные модели (с рождением частиц из с-поля, из вакуума), сохраняющие стационарность Вселенной.

В 1964 г. американские ученые — астрофизик А. Пензиас и радиоастроном К. Вильсон обнаружили однородное изотропное реликтовое излучение, явно свидетельствующее о «горячем начале» Вселенной. Эта модель стала доминирующей, была признана большинством космологов. Однако сама эта точка «начала», точка сингулярности рождала множество проблем и споров как по поводу механизма «Большого взрыва», так и потому, что поведение системы (Вселенной) вблизи нее не удавалось описать в рамках известных научных теорий (бесконечно большие температура и плотность должны были сочетаться с бесконечно малыми размерами) [7]. В XX в. выдвигалось множество моделей Вселенной — от тех, которые отвергали в качестве основы теорию относительности, до тех, которые изменяли в базовой модели какой-либо фактор, например «сотовое строение Вселенной» или теория струн. Так, для снятия противоречий, связанных с сингулярностью, в 1980—1982 гг. американский астроном П. Стейнхарт и советский астрофизик А. Линде предложили модификацию модели расширяющейся Вселенной — модель с инфляционной фазой (модель «раздувающейся Вселенной»), в которой первые мгновения после «Большого взрыва» получали новую интерпретацию. Эту модель продолжали дорабатывать и позже, она снимала ряд существенных проблем и противоречий космологии [3]. Исследования не прекращаются и в наши дни: выдвинутая японскми ученми гипотеза о происхождении первичных магнитных полей хорошо согласуется с описанной выше моделью и позволяет надеяться получить новые знания о ранних стадиях существования Вселенной.

Как объект исследования Вселенная слишком сложна, чтобы изучать ее дедуктивно, возможность продвигаться вперед в ее познании дают именно методы экстраполяции и моделирования. Однако эти методы требуют точного соблюдения всех процедур (от постановки проблемы, выбора параметров, степени подобия модели и оригинала до интерпретации полученных результатов), и даже при идеальном выполнении всех требований результаты исследований будут носить принципиально вероятностный характер.

Математизация знаний, значительно усиливающая эвристические возможности многих методов, является общей тенденцией науки XX в. Не стала исключением и космология: возникла разновидность мысленного моделирования — математическое моделирование, метод математической гипотезы. Сущность его в том, что сначала решаются уравнения, а затем подыскивается физическая интерпретация полученных решений. Данный порядок действий, не характерный для науки прошлого, обладает колоссальным эвристическим потенциалом. Именно этот метод привел Фридмана к созданию модели расширяющейся Вселенной, именно таким путем был открыт позитрон и совершено еще много важных открытий в науке конца XX в.

Компьютерные модели, в том числе и при моделировании Вселенной, рождены развитием компьютерной техники. На их основе доработаны модели Вселенной с инфляционной фазой; в начале XXI в. обработаны большие массивы информации, полученные с космического зонда, и создана модель развития Вселенной с учетом «темной материи» и «темной энергии».

Со временем изменялась трактовка многих фундаментальных понятий.

Физический вакуум понимается уже не как пустота, не как эфир, а как сложное состояние с потенциальным (виртуальным) содержанием материи и энергии. При этом обнаружено, что известные современной науке космические тела и поля составляют незначительный процент массы Вселенной, а большая часть массы заключена в косвенно обнаруживающих себя «темной материи» и «темной энергии». Исследования последних лет показали, что значительная часть этой энергии действует на расширение, растягивание, разрывание Вселенной, что может привести к фиксируемому ускорению расширения [2]. В связи с этим требует пересмотра сценарий возможного будущего Вселенной.

Категория времени является одной из категорий, наиболее обсуждаемых в космологии. Большинство исследователей придает времени объективный характер, но согласно традиции, идущей от Августина и И. Канта, время и пространство являются формами нашего созерцания, т.е. они толкуются субъективно. Время рассматривается либо как параметр, не зависящий от каких бы то ни было факторов (субстанциальная концепция, идущая от Демокрита и лежащая в основе классической ньютоновской модели Вселенной), либо как параметр, связанный с движением материи (реляционная концепция, идущая от Аристотеля и ставшая основой квантово-релятивистской модели Вселенной). Наиболее распространена динамическая концепция, представляющая время движущимся (говорят о течении времени), но выдвигалась и противоположная концепция — статическая. Время в различных моделях выступает или циклическим, или конечным, или бесконечным и линейным. Сущность времени чаще всего связывают с причинностью. Обсуждаются такие проблемы, как обоснование выделения настоящего момента времени, его направленности, анизотропии, необратимости, универсальности времени, т.е. при всех ли состояниях Вселенной существует время и всегда ли оно одномерно или может иметь иную размерность и даже не существовать в определенных условиях (например, в точке сингулярности). Наименее разработан вопрос об особенностях времени в сложных системах: биологических, психических, социальных.

При создании моделей Вселенной существенную роль играют некоторые константы — гравитационная постоянная, постоянная Планка, скорость света, средняя плотность материи, число измерений пространства-времени. Исследуя эти константы, некоторые космологи пришли к выводу, что при других значениях этих констант во Вселенной не существовало бы сложных форм материи, не говоря уже о жизни и тем более разуме.

В последние годы к сложнейшим проблемам космологии добавились новые: изучение «темной материи» и «темной энергии», поиски бозона Хиггса.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

  • 1. Грин Б. Скрытая реальность. Параллельные миры и глубинные законы космоса. М., 2013.
  • 2. Евсюков В.В. Мифы о Вселенной. Новосибирск, 1988.
  • 3. Казютинский В. В. Современная космология. Философские горизонты. М., 2012.
  • 4. Латыпов Н.Н., Бейлин В.А., Верешков Г.М. Вакуум, элементарные частицы и Вселенная. М., 2001.
  • 5. Линде А.Д. Физика элементарных частиц и инфляционная космология. М., 1990.
  • 6. Надточаев А. С. Философия и наука в эпоху античности. М., 1990.
  • 7. Новиков И.Д. Эволюция Вселенной. М., 1990.
  • 8. Павленко А.Н. Европейская космология: основания эпистемологического поворота. М., 1997.
  • 9. Хокинг С. От большого взрыва до черных дыр. М., 1990.
 
Посмотреть оригинал
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Пред   СОДЕРЖАНИЕ ОРИГИНАЛ   След >
 

Популярные страницы