Меню
Главная
Авторизация/Регистрация
 
Главная arrow География arrow Геоэкология

АНТРОПОГЕННЫЕ ВОЗДЕЙСТВИЯ И РЕАКЦИИ НА НИХ ЭКОСИСТЕМ ЗЕМЛИ

ОСНОВНЫЕ ВИДЫ АНТРОПОГЕННЫХ ВОЗДЕЙСТВИЙ НА ЭКОСИСТЕМЫ ЗЕМЛИ

КОНЦЕПЦИЯ, ЭНЕРГИЯ И ДИНАМИКА ЭКОСИСТЕМЫ

Концепция экосистемы. Любая единица (биосистема), включающая все совместно функционирующие организмы (биотическое сообщество) на данном участке и взаимодействующая с физической средой таким образом, что поток энергии создает четко определенные биотические структуры и круговорот веществ между живой и неживой частями, представляет собой экологическую систему, или экосистему.

Главным предметом исследования при экосистемном подходе становятся процессы трансформации вещества и энергии между биотой и физической средой, т.е. возникающий биогеохимический круговорот веществ в экосистеме в целом (рис. 5.1).

Это позволяет дать обобщенную интегрированную оценку результатов жизнедеятельности сразу многих отдельных организмов многих видов (консументов, продуцентов, редуцентов), так как по биогео- химическим функциям, т.е. по характеру осуществляемых в природе процессов превращения вещества и энергии, организмы более однообразны, чем по своим морфологическим признакам и строению. Например, все высшие растения потребляют одни и те же вещества, все они используют свет и благодаря фотосинтезу образуют близкие по составу органические вещества и выделяют кислород.

В настоящее время концепция экосистемы — одно из наиболее важных обобщений биологии — играет весьма важную роль в геоэкологии. Во многом этому способствовали два обстоятельства: во-первых, геоэкология как научная дисциплина созрела для такого рода обобщений, и они стали жизненно необходимы, а во-вторых, сейчас как никогда остро встали вопросы охраны природы и теоретического обоснования природоохранных мероприятий, которые опираются,

Перенос вещества (сплошная линия) и энергии (пунктирная линия) в природных экосистемах (Бигон и др., 1989)

Рис. 5.1. Перенос вещества (сплошная линия) и энергии (пунктирная линия) в природных экосистемах (Бигон и др., 1989)

прежде всего, на концепцию биотических сообществ — экосистем. Кроме того, распространению идеи экосистемы способствовала гибкость самого понятия, так как к экосистемам можно относить биотические сообщества любого масштаба с их средой обитания — от пруда до Мирового океана и от пня в лесу до обширного лесного массива, например тайги. В связи с этим выделяют: микроэкосистемы (подушка лишайника и т.п,)мезоэкосистемы (пруд, озеро, степь и др.); макроэкосистемы (континент, океан) и, наконец, глобальную экосистему (биосфера Земли), или экосферу интеграцию всех экосистем мира.

Типичным примером экосистемы может быть подушка лишайника на стволе дерева. Замкнутость круговорота в такой системе невелика: часть продуктов распада выносится за пределы лишайника дождевыми водами, часть животных мигрирует в другие местообитания. Границы этой экосистемы очерчены границами лишайника, но ее существование будет достаточно стабильным, если вынос будет компенсироваться поступлением вещества.

Существуют экосистемы, в которых внутренний круговорот вещества вообще малоэффективен — реки, склоны гор, здесь стабильность поддерживается только притоком вещества извне. Многие системы достаточно автономны — пруды, озера, океан, леса и др. Но даже биосфера Земли часть веществ отдает в Космос и получает вещества из Космоса.

Таким образом, природные экосистемыэто открытые системы: они должны получать и отдавать вещество и энергию.

Запасы веществ, усвояемые организмами и, прежде всего, продуцентами, в природе небезграничны. Если бы эти вещества не использовались многократно, а точнее, не были бы вовлечены в этот вечный круговорот, то жизнь на Земле была бы вообще невозможна. Такой «бесконечный» круговорот (см. рис. 5.1) биогенных компонентов возможен лишь при наличии функционально различных групп организмов, способных осуществлять и поддерживать поток веществ, извлекаемых ими из окружающей среды.

Для поддержания круговорота веществ в экосистеме необходимы неорганические молекулы в усвояемой для продуцентов форме, кон- сументы, питающиеся продуцентами и другими консументами, а также редуценты, восстанавливающие органические вещества снова до неорганических молекул для питания продуцентов.

С точки зрения пищевых взаимодействий организмов трофическая структура экосистемы делится на два яруса:

  • 1) верхний — автотрофный ярус, или «зеленый пояс», включающий фотосинтезирующие организмы, создающие сложные органические молекулы из неорганических простых соединений;
  • 2) нижний — гетеротрофный ярус, или «коричневый пояс» почв и осадков, в котором преобладает разложение отмерших органических веществ снова до простых минеральных образований. Однако, чтобы разобраться в сложных биологических взаимодействиях в экосистеме, следует выделить ряд таких компонентов, как:
  • 1) неорганические вещества (С, N, С02, Н20, Р, О и др.), участвующие в круговоротах;
  • 2) органические соединения (белки, углеводы, липиды, гумусовые вещества и др.), связывающие биотическую и абиотическую части;
  • 3) воздушная, водная и субстратная среда, включающая абиотические факторы;
  • 4) продуценты — автотрофные организмы, в основном зеленые растения, способные производить пищу из простых неорганических веществ;
  • 5) консументы, или фаготрофы (пожиратели), — гетеротрофы, в основном животные, питающиеся другими организмами или частицами органического вещества;
  • 6) редуценты, или сапротрофы (питающиеся гнилью), — гетеротрофные организмы, в основном бактерии и грибы, получающие энергию путем разложения отмершей или поглощения растворенной органики. Сапротрофы высвобождают неорганические элементы питания для продуцентов и, кроме того, являются пищей для консументов.

Энергия экосистемы. Жизнь на Земле существует за счет солнечной энергии. Свет — единственный на Земле пищевой ресурс, энергия которого, в соединении с углекислым газом и водой, рождает процесс фотосинтеза. Фотосинтезирующие растения создают органическое вещество, которым питаются травоядные животные, ими питаются плотоядные и т.д., в конечном итоге растения «кормят» весь остальной живой мир, т.е. солнечная энергия через растения как бы передается всем организмам.

Энергия передается от организма к организму, создавая пищевую, или трофическую, цепь: от автотрофов, продуцентов (создателей) к гетеротрофам, консументам (пожирателям) и так 4—6 раз с одного трофического уровня на другой.

Трофический уровень — это место каждого звена в пищевой цепи. Первый трофический уровень — это продуценты, все остальные — кон- сументы. Второй трофический уровень — это растительноядные кон- сументы; третий — плотоядные консументы, питающиеся растительноядными формами; четвертый — консументы, потребляющие других плотоядных, и т.д. Следовательно, можно и консументов разделить по уровням: консументы первого, второго, третьего и т.д. порядков (рис. 5.2).

Пищевые взаимосвязи организмов в биогеоценозе (Пономарева и др., 2005]

Рис. 5.2. Пищевые взаимосвязи организмов в биогеоценозе (Пономарева и др., 2005]

Четко распределяются по уровням лишь консументы, специализирующиеся на определенном виде пищи. Однако есть виды, питающиеся мясом и растительной пищей (человек, медведь и др.), которые могут включаться в пищевые цепи на любом уровне.

Пища, поглощаемая консументом, усваивается не полностью — от 12 до 20% у некоторых растительноядных до 75% и более у плотоядных. Энергетические затраты связаны прежде всего (рис. 5.3) с поддержанием метаболических процессов, которые называют тратой на дыхание, оцениваемой общим количеством С02, выделенного организмом. Значительно меньшая часть идет на образование тканей и некоторого запаса питательных веществ, т.е. на рост. Остальная часть пищи выделяется в виде экскрементов. Кроме того, значительная часть энергии рассеивается в виде тепла при химических реакциях в организме и, особенно, при активной мышечной работе. В конечном итоге вся энергия, использованная на метаболизм, превращается в тепловую и пассеивается в окпужаюшей спеде.

Поток энергии в сообществе (Бигон и др., 1989)

Рис. 5.3. Поток энергии в сообществе (Бигон и др., 1989):

Рп — продукция трофического уровня rr, Rn — потери на дыхание на трофическом уровне гг, Fn — потери энергии с фекалиями на трофическом уровне л; 1П — поступление энергии на трофический уровень л; Р(ь1 — доступная для потребления продукция трофического

уровня л-1

Таким образом, большая часть энергии при переходе с одного трофического уровня на другой, более высокий, теряется. Приблизительно потери составляют около 90%: на каждый следующий уровень передается не более 10% энергии от предыдущего уровня. Так, если калорийность продуцента 1000 Дж, то при попадании в тело фитофага остается 100 Дж, в теле хищника уже 10 Дж, а если этот хищник будет съеден другим, то на его долю останется лишь 1 Дж, т.е. 0,1% от калорийности растительной пищи.

Однако такая строгая картина перехода энергии с уровня на уровень не совсем реальна, поскольку трофические цепи экосистем сложно переплетаются, образуя трофические сети. Но в конечном итоге — рассеивание и потеря энергии, которая, чтобы существовала жизнь, должна возобновляться.

Нельзя забывать еще и мертвую органику, которой питается значительная часть гетеротрофов. Среди них есть и сапрофаги и сапрофиты (грибы), использующие энергию, заключенную в детрите. Поэтому различают два вида трофических цепей: цепи выедания, или пастбищные, которые начинаются с поедания фотосинтезирующих организмов, и детритные цепи разложения, которые начинаются с остатков отмерших растений, трупов и экскрементов животных.

Таким образом, входя в экосистему, поток лучистой энергии разбивается на две части, распространяясь по двум видам трофических сетей, но источник энергии общий — солнечный свет.

В круговорот веществ в экосистеме часто добавляются вещества, попадающие сюда извне. Они концентрируются в трофических цепях и накапливаются в них, т.е. происходит их биологическое накопление. Это явление наглядно видно на примере концентрирования радионуклидов и пестицидов в трофических цепях.

Наиболее известна способность к биологическому накоплению у ДДТ — вещества, ранее широко применявшегося для борьбы с вредными насекомыми и запрещенного к применению в настоящее время. Ю. Одум (1986) приводит пример того, как недоучет закономерностей биологического накопления, обусловленного экологическими процессами, привел к гибели птиц, питающихся гидробионтами, хотя опыляли комаров на болотах Лонг-Айленда (п-ов Флорида), давая концентрацию ДДТ значительно ниже дозы, смертельной для рыб и других животных. Он объясняет это тем, что ядовитые осадки адсорбировались на детрите, концентрировались в тканях редуцентов (де- тритофагов) и мелкой рыбы, а дальше — в хищниках, таких как рыбоядные птицы. Благодаря многократному поглощению с начала детритной цепи яд накапливался в жировых отложениях рыб и птиц. И даже если его доза ниже смертельной и птицы не погибали сами, то ДДТ препятствовал образованию яичной скорлупы: тонкая скорлупа лопалась еще до того, как разовьется птенец. Такие явления могут привести к уничтожению целых популяций хищных птиц, например скопы.

Таким образом, принципы биологического накопления надо учитывать при любых поступлениях загрязнений в среду.

Динамика экосистемы. Экосистема испытывает те же динамические процессы, что и ее популяции и сообщества: цикличность, смену популяций и биоценозов и др.

Суточная, сезонная и многолетняя периодичность внешних условий и проявление внутренних (эндогенных) ритмов организмов, флуктуации популяций достаточно синхронно отражаются в цикличности всего сообщества — биоценоза.

Суточные циклы наиболее резко выражены в условиях климата высокой Континентальности, где значительная разница между дневными и ночными температурами. Например, в песчаных пустынях Средней Азии в жаркий полдень многие животные прячутся в норы или ведут ночной образ жизни летом, а некоторые — зимой переходят на дневной образ жизни (змеи, пауки и др.). Однако суточные ритмы наблюдаются во всех географических зонах, и даже в тундре в полярный день растения закрывают и открывают свои цветки в соответствии с этими ритмами.

Сезонная цикличность выражается в том, что на определенный период из биоценоза «выпадают» группы животных и даже целые популяции, впадающие в спячку, в период диапауз или оцепенений, при исчезновении однолетних трав, опаде листвы и т.п. Это в слабой форме выражено даже во влажных тропических лесах.

Многолетняя цикличность проявляется благодаря флуктуациям климата. Многолетняя периодичность в изменении численности биоценоза, вызванная резко неравномерным выпадением осадков по годам, с периодическим повторением засух, хорошо иллюстрируется повторением массовых размножений животных, например са- ранчевых (налеты саранчи).

Многолетняя цикличность может быть связана с особенностями развития растений — эдификаторов. Например, в буковых лесах сомкнутые кроны многолетних деревьев угнетают растительность нижних ярусов, но как только бук упадет, начинают бурно расти молодые деревья, и крона восстанавливается. Так происходит обновление букового леса, на которое в естественных условиях требуется цикл в 250 лет.

Экологическая сукцессия. Ю. Одум (1986) под экологической сукцессией понимает вообще весь процесс развития экосистемы. Более конкретное определение дает этому явлению Н.Ф. Реймерс. Согласно определению Н.Ф. Реймерса (1994), под сукцессией понимается последовательная смена биоценозов, преемственно возникающая на одной и той же территории (биотопе) под влиянием природных факторов (в том числе и внутренних противоречий самих биоценозов) или воздействия человека. Изменения в сообществе в результате сукцессии носят закономерный характер и обусловлены взаимодействием организмов между собой и с окружающей абиотической средой.

Экологическая сукцессия происходит в определенный отрезок времени, в который изменяется видовая структура сообщества и абиотическая среда его существования вплоть до кульминации его развития — возникновения стабилизированной системы. Такую стабилизированную экосистему называют климаксом. В этом состоянии система находится тогда, когда в ней на единицу энергии приходится максимальная биомасса и максимальное количество связей между организмами. Однако к этому состоянию система проходит через ряд стадий развития, первые из которых часто называют «стадией первых поселенцев». Поэтому, в более узком смысле, сукцессия — это последовательность сообществ, сменяющих друг друга в данном районе.

Стабильность сообщества может быть длительной лишь в том случае, если изменения среды, вызванные одними организмами, точно компенсируются деятельностью других, с противоположными экологическими требованиями. Это условие нарушается при нарушении круговорота веществ, и тогда часть популяций, которые не могут выдержать конкуренции, вытесняются другими, для которых эти условия благоприятны, и гомеостаз восстанавливается.

Для возникновения сукцессии необходимо свободное пространство. В зависимости от первоначального состояния субстрата различают первичную и вторичную сукцессии. Первичная сукцессия — это если формирование сообществ начинается на первоначально свободном субстрате, а вторичная сукцессия — это последовательная смена одного сообщества, существовавшего на данном субстрате, другим, более совершенным для данных абиотических условий.

Первичная сукцессия позволяет проследить формирование сообществ с самого начала. Она может возникнуть на склоне после оползня или обвала, на образовавшейся отмели при отступлении моря и изменении русла рекой, на обнаженных эоловых песках пустыни, не говоря уже об антропогенных нарушениях: свежая лесосека, намывная полоса морского побережья, искусственные водохранилища.

Первыми, как правило, на свободное пространство начинают внедряться растения посредством перенесенных ветром спор и семян либо за счет вегетативных органов оставшихся по соседству растений. В качестве примера первичной сукцессии обычно приводят зарастание еловым лесом новых территорий на севере нашей страны. Ельник — это последняя климаксная стадия развития экосистемы в климатических условиях Севера, т.е. уже коренной биоценоз. Вначале же здесь развиваются березняки, ольховники, осинники, под пологом которых растут ели. Постепенно они перерастают березу и вытесняют ее, захватывая пространство (рис. 5.4).

Семена обеих древесных пород легко переносятся ветром, но, если даже они прорастут одновременно, береза растет намного быстрее — к 6—10 годам ель едва достигает 50—60 см, а береза — 8—10 м. Под сомкнутыми кронами берез возникает уже свой микроклимат, обилие опада листьев способствует формированию особых почв, поселяются многие животные, появляется разнообразный травянистый покров. А ель продолжает расти в столь благоприятной обстановке, и, наконец, береза не выдерживает конкуренции с ней за пространство и свет и вытесняется елью.

Классическим примером природной сукцессии является «старение» озерных экосистем, которое выражается в зарастании озер от берегов к центру такими растениями, как осоки, тростник, камыш и рогоз (с примесью погруженных в воду растений); кувшинки; кубышки и другие растения с плавающими листьями; рдесты и другие, погруженные в воду растения; донные мхи и водоросли (глубоководная часть озера без высших растений). Наблюдается ряд стадий зарастания: от начальных — дальние от берега — до достигнутых у берега (рис. 5.5). В конечном итоге озеро превращается в торфяное болото, представляющее собой устойчивую экосистему климаксно- го типа. Но и она не вечна — на ее месте постепенно может возникнуть лесная экосистема уже благодаря наземной сукцессионной серии в соответствии с климатическими условиями местности.

Зарастание водоема в значительной степени определяется при- вносом извне биогенных элементов. В природных условиях биогены сносятся с площади водосбора.

Смена березняка ельником (Пономарева и др., 2005)

Рис. 5.4. Смена березняка ельником (Пономарева и др., 2005)

Вторичная сукцессия является, как правило, следствием деятельности человека. В частности, описанная выше смена растительности при формировании ельника чаще происходит в результате вторичной сукцессии, возникающей на вырубках ранее существовавшего леса (ельника). Вторичная сукцессия заканчивается стабильной стадией сообщества через 150-250 лет, а первичная длится 1000 лет.

Схема зарастания озера (Соловьев, 1987)

Рис. 5.5. Схема зарастания озера (Соловьев, 1987):

1 — осоковый торф; 2 — тростниковый и камышовый торф; 3 — сапропелевый торф; 4 — сапропелит

Вторичная, антропогенная сукцессия проявляется также и в эвтрофикации. Бурное «цветение» водоемов, особенно искусственных водохранилищ, есть результат их обогащения биогенами и обусловлено деятельностью человека. «Пусковым механизмом» процесса обычно является обильное поступление фосфора, реже — азота, иногда углерода и кремния. Ключевую роль обычно играет фосфор.

При поступлении биогенов резко возрастает продуктивность водоемов за счет роста численности и биомассы водорослей, прежде всего сине-зеленых — цианей, из царства дробянок. Многие из них могут фиксировать молекулярный азот из атмосферы, тем самым снижая лимитирующее действие азота, а некоторые способны освобождать фосфор из продуктов метаболизма различных водорослей. Обладая этим и рядом других подобных качеств, они захватывают водоем и доминируют в биоценозе.

Биоценоз практически полностью перерождается. Наблюдаются массовые заморы рыб. В особо тяжелых случаях вода приобретает цвет и консистенцию горохового супа, неприятный гнилостный запах. Жизнь аэробных организмов в таких водоемах полностью исключена.

Последовательный ряд постепенно и закономерно сменяющих друг друга в сукцессии сообществ называется сукцессионной серией. Она наблюдается в природе не только в лесах, болотах и озерах (см.

рис. 5.4; 5.5), но и на стволах отмирающих деревьев и в пнях, где происходит закономерная смена сапрофитов и сапрофагов, в лужах и прудах и т.д. Иными словами, сукцессии разномасштабны и иерархичны, так же как и сами экосистемы.

Сукцессионные процессы и климакс. Первые переселенцы, которые приживаются на новом участке, — это организмы, которые толерант- ны к абиотическим условиям нового для них местообитания. Не встречая особого сопротивления среды, они чрезвычайно быстро размножаются (саранча, эфемерная растительность и т.п.), т.е. на ранних этапах в эволюции экосистемы преобладает r-стратегия (рост численности). Но постепенно возрастает видовое разнообразие за счет достаточно быстрой смены и увеличения количества популяций и начинает возрастать значение ^-фактора (ограничитель роста).

Увеличение видового разнообразия приводит к усложнению связей внутри сообщества, снижению чрезмерной рождаемости и доминирования массовых видов и т.д. Наконец действия г- и А’-факторов уравновешиваются, и сообщество развивающейся серии становится стабильным, или климаксным, — это самоподдерживающееся сообщество, находящееся в равновесии с физическим местообитанием. Развивающееся сообщество преобразует и само местообитание.

На первых этапах для растительных форм первостепенное значение имеют почвенные биогенные элементы. Но черпать их из запасов почв до бесконечности невозможно, и по мере истощения этих запасов разложение отмершей органики становится основным источником питания минеральными веществами биогеохимического круговорота.

Однако такой круговорот возможен лишь в автотрофной системе, черпающей энергию от солнца. Другое дело — гетеротрофная сукцессия, когда приток мертвого органического вещества не восполняет запасы, т.е. первичная продукция равна нулю, и участвуют в сукцессии только гетеротрофные организмы. В этом случае количество энергии не добавляется, а уменьшается, и система прекращает свое существование — все организмы погибают или, в лучшем случае, переходят в покоящиеся стадии. Характерным примером такой сукцессии является сукцессия в гниющих стволах деревьев, в трупах животных, фекалиях и на вторичных стадиях обработки сточных вод. Такая модель сукцессии должна ассоциироваться с эксплуатацией залежей горючих полезных ископаемых человеком.

На ранних стадиях сукцессионной серии чистой продукции получается значительно больше и при ее изымании человеком сукцессия только приостанавливается, но основа продуктивности на этих этапах не подрывается. Другое дело в климаксных сериях — здесь чистая продуктивность снижается и, в принципе, становится константой. В этом случае очень важно знать величину этой константы с тем, чтобы четко представлять себе ту величину чистой продукции, которую можно изъять из системы, сохранив ее способность к самовозобновлению.

Так, например, вырубку лесов надо вести на локальных участках, с оставлением части территории с коренными типами пород. Это сократит время восстановления фитоценозов, так как сукцессионные серии сократятся до нескольких десятилетий (30-50 лет). Сплошная рубка приведет к разрушению всей экосистемы, в том числе ее эда- фической части. Восстановление лишь почв потребует тысячелетия. Более того, сукцессионная серия может пойти и не по пути формирования прежнего лесного сообщества, а по пути формирования пустыни и болот или других малопродуктивных экосистем.

Таким образом, сообщество не может одновременно быть высокостабильным и давать большой выход чистой продукции, которую можно было бы изъять без вреда для самого биоценоза.

В почвенной биоте столь же активно протекают сукцессионные процессы. Они обусловлены разложением органического вещества и лежат в основе биологических круговоротов — естественных регуляторов процессов, обеспечивающих плодородие почвы. Загрязнение почвенной среды и нарушение процессов образования гумуса снижают регуляторную способность почв и ведут к подрыву естественного плодородия, а следовательно, и к изменениям в экосистеме. Таким образом, эдафический компонент может весьма существенно повлиять на ход экологической сукцессии при нарушении ее регуляторной функции.

Полнота сукцессии и видовое разнообразие возможны в случае надежной «работы» круговорота питательных веществ. Только в этом случае можно говорить о стабильности экосистемы, которая достигается в результате преобразования сообщества на основе длительной эволюции видов.

Полным биологическим разнообразием обладает биосфера, которая и является самой стабильной глобальной экосистемой — экосферой. Но биологическое разнообразие, обеспечивающее ее стабильность, — это, прежде всего, разнообразие стабильных природных экосистем, отличающихся видовым разнообразием естественной биоты.

 
Посмотреть оригинал
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Пред   СОДЕРЖАНИЕ ОРИГИНАЛ   След >
 

Популярные страницы