Меню
Главная
Авторизация/Регистрация
 
Главная arrow Медицина arrow Антиоксиданты растений

Основная рекомендуемая литература

Менъщикова Е. Б., Ланкин В. 3., Зенков Н. К., Бондарь И. А., Круговых Н. Ф., Труфакин В. А. Окислительный стресс. Прооксиданты и антиоксиданты. М.: Фирма «Слово», 2006. 556 с.

Полесская О. Г. Растительная клетка и активные формы кислорода. М.: Изд-во КДУ, 2007. 140 с.

Путилина Ф. Г., Ещенко Н.Д., Галкина О. В. Свободнорадикальное окисление. СПб.: Изд-во СПбГУ, 2008.161 с.

DellaPenna D. Progress in the dissection and manipulation of vitamin E synthesis // Trends Plant Sci. 2005. Vol. 10. P. 574-579.

Demidchik V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology // Environ. Exp. Bot. 2015. Vol. 109. P.212-228.

Falcone Ferreyra M. L., Rius S. P, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications // Front. Plant Sci. 2012. Vol.3. Article 222.

Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life // Plant Physiol. 2006. Vol. 141. P.312-322.

Martin C„ Zhang Y., Tonelli C., Petroni K. Plants, diet and health // Annu Rev. Plant Biol. 2013. Vol. 64. P.19-46.

Noctor G., Mhamdi A., Chaouch S., Han Y., Neukermans /., Marquez-Garcia B., Queval G., Foyer C.H. Glutathione in plants: an integrated overview // Plant Cell Environ. 2012. Vol.35. P.454- 484.

Repetto M., Semprine /., Boveris A. Lipid peroxidation: chemical mechanism, biological implications and analytical determination // Lipid peroxidation / Ed. A.Catala. Rijeka, Croatia: InTech, 2012. Ch. 1. P.1-30.

Upadhyay R., Rao L. J. M. An outlook on chlorogenic acids — occurrence, chemistry, technology, and biological activities // Crit. Rev. Food Sci. Nutr. 2013. Vol. 53. P.968-984.

Дополнительная литература К главе 1

Пиневич А. В. Микробиология железа и марганца. СПб.: Изд-во СПбГУ, 2005. 374 с. Пиневич А. В., Аверина С. Г. Оксигенная фототрофия. СПб.: Изд-во С.-Петерб. ун-та, 2002. 236 с.

Asada К. Production and scavenging of reactive oxygen species in chloroplasts and their functions // Plant Physiol. 2006. Vol. 141. P. 391-396.

Bleier L, Dr?se S. Superoxide generation by complex III: from mechanistic rationales to functional consequences // Biochim. Biophys. Acta. 2013. Vol. 1827. P. 1320-1331.

Cai K, Fang Y, Xia Y, Su Y. Effect of exogenous iron on aerobic catalytic mechanism of soybean lipoxygenase // J.Mol. Catal. B-Enzym. 2004. Vol. 32. P. 21-26.

Dudareva N„ Klempien A., Muhlemann }. K., Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds // New Phytol. 2013. Vol. 198. P. 16-32.

Keller M. A., Piedrafita G., Raiser M. The widespread role of non-enzymatic reactions in cellular metabolism // Curr. Opin. Biotech. 2015. Vol. 34. P. 153-161.

Kuhn H., Banthiya S., van Leyen K. Mammalian lipoxygenases and their biological relevance // Biochim. Biophys. Acta. 2015. Vol. 1851. P. 308-330.

Ohta S. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases // Biochim. Biophys. Acta. 2012. Vol. 1820. P. 586-594.

Sagi M., Fluhr R. Production of reactive oxygen species by plant NADPH oxidases // Plant Physiol. 2006. Vol. 141. P.336-340.

Singh S., Pandey V. P, Naaz H., Dwivedi U N. Phylogenetic analysis, molecular modeling, substrate-inhibitor specificity, and active site comparison of bacterial, fungal, and plant heme peroxidases // Biotechnol. Appl. Biochem. 2012. Vol.59. P.283-294.

Triantaphylid?s G, HavauxM. Singlet oxygen in plants: production, detoxification and signaling // Trends Plant Sci. 2009. Vol. 14. P.219-228.

К главе 2

Голубев А. Г. Биология продолжительности жизни и старения. СПб.: Изд-во Н-Л., 2015. 383 с.

Farmer Е. Е., Mueller M.J. ROS-mediated lipid peroxidation and RES-activated signaling // Annu. Rev. Plant Biol. 2013. Vol.64. P.429-450.

Hulbert A. J., Pamplona R., Buffenstein R., Buttemer W. A. Life and death: metabolic rate, membrane composition, and life span of animals // Physiol Rev. 2007. Vol. 87. P. 1175-1213.

Gruger E. H„ Stansby M. E. Fatty acid composition of fish oils. Washington: US Fish Wildlife Serv., 1967. 276 p.

Jairam V, Uchida K, Narayanaswami V. Pathophysiology of lipoprotein oxidation // Lipoproteins — role in health and diseases / eds S. Frank, G. Kostner. Rijeka, Croatia: InTech, 2012. Ch. 16.

Madamanchi N. R., Runge M. S. Redox signaling in cardiovascular health and disease // Free Rad. Biol. Med. 2013. Vol. 61. P. 473-501.

Molendi-Coste O., Legry V., Leclercq I. A. Why and how meet n-3 PUFA dietary recommendations? // Gastroenterol. Res. Pract. 2011. Vol. 2011. Article ID364040.

Shao B., Fu X., McDonald T. O., Green P. S., Uchida K, O’Brien K. D., Oram J. F., Heinecke J. W. Acrolein impairs ATP binding cassette transporter A1-dependent cholesterol export from cells through site-specific modification of apolipoprotein A-I // J. Biol. Chem. 2005. Vol.280. P.36386- 36396.

Speakman J. R., Selman C. The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan // Bioessays. 2011. Vol. 33. P. 255-259.

Whitaker B. D. Fatty-acid composition of polar lipids in fruit and leaf chloroplasts of “16: 3 and “18: 3 ’’-plant species // Planta. 1986. Vol. 169. P. 313-319.

Wood J. D., Enser M., Fisher A. V, Nute G. R., Sheard P. R., Richardson R. I., Hughes S. I., Whittington F.M. Fat deposition, fatty acid composition and meat quality: a review 11 Meat Sci. 2008. Vol. 78. P.343-358.

BerlettB. S., Stadtman E. R. Protein oxidation in aging, disease, and oxidative stress // J. Biol. Chem. 1997. Vol.272. P.20313-20316.

Cooke M. S., Evans M. D„ Dizdaroglu M., Lun?e J. Oxidative DNA damage: mechanisms, mutation, and disease //FASEB J. 2003. Vol. 17. P. 1195-1214.

Duan J., Kasper D. L. Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species // Glycobiology. 2011. Vol. 21. P 401-409.

Kumar G. N. M„ Houtz R. L, Knowles N. R. Age-induced protein modifications and increased proteolysis in potato seed-tubers // Plant Physiol. 1999. Vol. 119. P.89-99.

К главе 4

Antolovich M., Premier P. D., Patsalides E., McDonald S., Robards K. Methods for testing antioxidant activity // Analyst. 2002. Vol. 127. P. 183-198.

К главе 5

Чупахина EH. Система аскорбиновой кислоты растений. Калининград: Изд-во КГУ, 1997. 122 с.

Davey M.W., Montagu M.V., Inze D., Sanmartin M., Kanellis A., Smirnoff N., Benzie I.J.J., Strain J. J., Favell D., Fletcher J. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing // J. Sei. Food Agric. 2000. Vol. 80. P. 825-860.

Erlandsen H., Abola E. E., Stevens R. C. Combining structural genomics and enzymology: completing the picture in metabolic pathways and enzyme active sites // Curr. Opin. Struct. Biol. 2000. Vol. 10. P.719-730.

Fry S. C. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals // Biochem. J. 1998. Vol.332. P.507-515.

Pignocchi C., Foyer С. H. Apoplastic ascorbate metabolism and its role in the regulation of cell signaling // Curr. Opin. Plant Biol. 2003. Vol.6. P.379-389.

Smirnoff N. The function and metabolism of ascorbic acid in plants 11 Ann. Bot. 1996. Vol. 78. P.661-669.

Streller S., Roth K. Von Seefahrern, Meerschweinchen und Citrusfr?chten. Der lange Kampf gegen Skorbut // Chem. Unserer Zeit. 2009. Vol. 43. P. 38-54.

Szarka A., Tomasskovics B., B?nhegyi G. The ascorbate-glutathione-a-tocopherol triad in abiotic stress response // Int. J. Mol. Sei. 2012. Vol. 13. P. 4458-4483.

К главе 6

Antonenko Y. N., Avetisyan A. V, Bakeeva L. E. e. a. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies // Biochemistry (Moscow). 2008. Vol. 73. P. 1273-1287.

Damon M., Zhang N.Z., Haytowitz D.B., Booth S.L. Phylloquinone (vitamin K,) content of vegetables // J.Food Compos. Anal. 2005. Vol. 18. P. 751-758.

James A. M., Smith R. A. J., Murphy M. P. Antioxidant and prooxidant properties of mitochondrial Coenzyme Q // Arch. Biochem. Biophys. 2004. Vol.423. P.47-56.

Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy // Free Rad. Biol. Med. 2014. Vol. 72. P. 76-90.

Lochner K, Doring O., Bottger M. Phylloquinone, what can we learn from plants? 11 BioFactors. 2003. Vol. 18. P. 73-78.

Maroz A., Anderson R. F, Smith R. A. J., Murphy M. R Reactivity of ubiquinone and ubiquinol with superoxide and the hydroperoxyl radical: implications for in vivo antioxidant activity // Free Rad. Biol. Med. 2009. Vol.46. P. 105-109.

Murphy M.P. Targeting lipophilic cations to mitochondria // Biochim. Biophys. Acta. 2008. Vol. 1777. P.1028-1031.

Napolitano M., Mariani G., Lapecorella M. Hereditary combined deficiency of the vitamin K-de- pendent clotting factors // Orphanet J.Rare Dis. 2010. Vol. 5. Article 21.

Nowicka B„ Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones // Biochim. Biophys. Acta. 2010. Vol. 1797. P. 1587-1605.

Piller L. E., Glauser G., Kessler F, Besagni C. Role of plastoglobules in metabolite repair in the tocopherol redox cycle // Front. Plant Sci. 2014. Vol. 5. Article 298.

Pravst I., Zmitek K., Zmitek J Coenzyme Q10 contents in foods and fortification strategies // Crit. Rev. Food Sci. Nutr. 2010. Vol.50. P.269-280.

Presse N„ Potvin S., Bertrand B., Calvo M. S., Ferland G. Phylloquinone content of herbs, spices and seasonings // J.Food Compos. Anal. 2015. Vol. 41. P. 15-20.

К главе 7

Basu H. N„ DelVecchio A. J., Flider F., Orthoeter F. T. Nutritional and potential disease prevention properties of carotenoids // J. Am. Oil Chem. Soc. 2001. Vol. 78. P. 665-675.

Boon C.S., McClements D.J., Weiss /., Decker E.A. Factors influencing the chemical stability of carotenoids in foods // Crit. Rev. Food Sci. Nutr. 2010. Vol. 50. P. 515-532.

Calvo M. M. Lutein: a valuable ingredient of fruit and vegetables // Crit. Rev. Food Sci. Nutr. 2005. Vol.45. P.671-696.

Cascella M., Barfuss S., Stocker A. Cis-retinoids and the chemistry of vision // Arch. Biochem. Biophys. 2013. Vol. 539. P. 187-195.

Delgado-Vargas F, Jimenez A. R., Paredes-Lopez O. Natural pigments: carotenoids, anthocyanins, and betalains — characteristics, biosynthesis, processing, and stability // Crit. Rev. Food Sci. Nutr. 2000. Vol. 40. P. 173-289.

Harrison E. H. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids // Biochim. Biophys. Acta. 2012. Vol. 1821. P.70-77.

Higuera-Ciapara I., Felix-Valenzuela L., Goycoolea F M. Astaxanthin: a review of its chemistry and applications // Crit. Rev. Food Sci. Nutr. 2006. Vol.46. P. 185-196.

Jang H.-J., Yoon S.-H., Ryu H.-K, Kim J.-H., Wang C.-L., Kim J.-Y., Oh D.-K, Kim S.-W. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system // Microb. Cell Fact. 2011. Vol. 10. P. 59-70.

Namitha К К, Negi P. S. Chemistry and biotechnology of carotenoids // Crit. Rev. Food Sci. Nutr. 2010. Vol. 50. P. 728-760.

Papaioannou E.H., Liakopoulou Kyriakides M., Karabelas A.J. Natural origin lycopene and its green’ downstream processing // Crit. Rev. Food Sci. Nutr. 2015. D01:10.1080/10408398.2013.817381.

Rodriguez-Amaya D. B. Assessment of the provitamin A contents of foods — the Brazilian experience // J.Food Comp. Anal. 1996. Vol.9. P. 196-230.

Tee E.-S., Lee C. Y. Carotenoids and retinoids in human nutrition // Crit. Rev. Food Sci. Nutr. 1992. Vol. 31. P.103-163.

Thompson D. A., Gal A. Vitamin A metabolism in the retinal pigment epithelium: genes, mutations, and diseases // Prog. Retinal Eye Res. 2003. Vol. 22. P. 683-703.

Viuda-Martos M., Sanchez-Zapata E., Sayas-Barbera E., Sendra ?., Perez-Alvarez J. A., Fernandez- Lopez J. Tomato and tomato byproducts. Human health benefits of lycopene and its application to meat products // Crit. Rev. Food Sci. Nutr. 2014. Vol. 54. P. 1032-1049.

Bela К., Horvath Е., Galle A., Szabados L., Tari L, Csiszar J. Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses // J. Plant Physiol. 2015. Vol. 176. P.192-201.

Bhatt I., Tripathi B. N. Plant peroxiredoxins: Catalytic mechanisms, functional significance and future perspectives // Biotechnol. Adv. 2011. Vol.29. P.850-859.

Brazier-Hicks M., Evans K.M., Cunningham O.D., Hodgson D.R. W., Steel P.G., Edwards R. Catabolism of glutathione conjugates in Arabidopsis thaliana // J. Biol. Chem. 2008. Vol. 283. P.21102- 21112.

Gill S. S., Anjum N. A., Hasanuzzaman M., Gill R., Trivedi D. K„ Ahmad I., Pereira E., Tuteja N. Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations // Plant Physiol. Biochem. 2013. Vol.70. P.204-212.

Hirotsu S., Abe Y., Okada K., Nagahara N„ Hori H., Nishino T, Hakoshima T. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product // Proc. Natl. Acad. Sci. USA. 1999. Vol. 96. P. 12333-12338.

Holmgren A. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide // Structure. 1995. Vol. 3. P.239-243.

Kumar B., Singla-Pareek S. L., Sopory S. K. Glutathione homeostasis: crucial for abiotic stress tolerance in plants // Abiotic stress adaptation in plants: physiological, molecular and genomic foundation / eds A.Pareek, S. К Sopory., H. J.Bohnert, Govindjee. Berlin; Heidelberg; N. Y.: Springer, 2010. Ch. 13. P.263-282.

Kvesitadze G., Khatisashvili G., Sadunishvili T, Ramsden J. J. Biochemical mechanisms of detoxification in higher plants. Basis of phytoremediation. Berlin; Heidelberg; N. Y.: Springer, 2006. 262 p.

Lillig C.H., Berndt C., Holmgren A. Glutaredoxin systems // Biochim. Biophys. Acta. 2008. Vol. 1780. P.1304-1317.

Lu S. C. Glutathione synthesis // Biochim. Biophys. Acta. 2013. Vol. 1830. P.3143-3153.

Meyer Y., Siala W., Bashandy T, Riondet G, Vignols E, Reichheld J. P. Glutaredoxins and thioredox- ins in plants // Biochim. Biophys. Acta. 2008. Vol. 1783. P.589-600.

Pivato M., Fabrega-Prats M., Masi A. Low-molecular-weight thiols in plants: Functional and analytical implications // Arch. Biochem. Biophys. 2014. Vol. 560. P. 83-99.

Rouhier N., Cerveau D„ Couturier /., Reichheld J.-P, Rey P. Involvement of thiol-based mechanisms in plant development // Biochim. Biophys. Acta. 2015. Vol. 1850. P. 1479-1496.

Schroder P. Fate of glutathione S-conjugates in plants: Degradation of the glutathione moiety // Regulation of enzymatic systems detoxifying xenobiotics in plants / ed. K.K. Hatzios. Dordrecht, Netherlands: Kluwer Acad. Pub., 1997. P.233-244.

К главе 9

Чупахина L H., Масленников П. В., Скрынник Л. Н. Природные антиоксиданты (экологический аспект). Калининград: Изд-во БФУ, 2011. 111с.

Butt М. S., Sultan М. Т. Coffee and its consumption: benefits and risks // Crit. Rev. Food Sci. Nutr. 2011. Vol.51. P.363-373.

Gloess A. N., Schonbachler B., Klopprogge B., DAmbrosio L., Chatelain K., Bongartz A., Strittmat- ter A., Rast M., Yeretzian C. Comparison of nine common coffee extraction methods: instrumental and sensory analysis // Eur. Food Res. Technol. 2013. Vol. 236. P. 607-627.

Rodriguez-Mateos A., Cifuentes-Gomez T, Tabatabaee S., Lecras C., Spencer J. P. E. Procyanidin, anthocyanin, and chlorogenic acid contents of highbush and lowbush blueberries // J. Agric. Food Chem. 2012. Vol. 60. P. 5772-5778.

Rice-Evans C. A., Miller N. J., Paganga G. Antioxidant properties of phenolic compounds // Trends Plant Sci. 1997. Vol. 2. P. 152-160.

Stodt U., Engelhardt U.H. Progress in the analysis of selected tea constituents over the past 20 years // Food Res. Int. 2013. Vol. 53. P. 636-648.

Tanaka Y., Sasaki N., Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids // Plant J. 2008. Vol. 54. P. 733-749.

Tounekti T., Joubert E„ Hernandez I., Munne-Bosch S. Improving the polyphenol content of tea // Crit. Rev. Plant Sci. 2013. Vol. 32. P. 192-215.

К главе 10

Asensi-Fabado M.A., Munne-Bosch S. Vitamins in plants: occurrence, biosynthesis and antioxidant function // Trends Plant Sci. 2010. Vol. 15. P. 582-592.

Dragland S., Senoo H., Wake K„ Holte K., BlomhoffR. Several culinary and medicinal herbs are important sources of dietary antioxidants // J.Nutr. 2003. Vol. 133. P. 1286-1290.

Landete J.M. Dietary intake of natural antioxidants: vitamins and polyphenols // Crit. Rev. Food Sci. Nutr. 2013. Vol. 53. P. 706-721.

Rosenbaum M., Knight JR., Leibel JR. L. The gut microbiota in human energy homeostasis and obesity// Trends Endocrin. Met. 2015. Vol.26. P.493-501.

К заключению

Covarrubias L., Hern?ndez-Garda D., Schnabel D., Salas-Vidal E., Castro-Obreg?n S. Function of reactive oxygen species during animal development: Passive or active? // Dev. Biol. 2008. Vol. 320. P.1-11.

Kama G., Sharma A., Guruprasad K, Pati P.K. Versatile roles of plant NADPH oxidases and emerging concepts // Biotechnol. Adv. 2014. Vol. 32. P. 551-563

M?ller К, Linkies A., Vreeburg JR. A. M., Fry S. G, Krieger-Liszkay A., Leubner-Metzger G. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth // Plant Physiol. 2009. Vol. 150. P. 1855-1865.

Potters G., Horemans N., Jansen M. A. K. The cellular redox state in plant stress biology — a charging concept // Plant Physiol. Biochem. 2010. Vol.48. P.292-300.

Schmitt F.-J., Renger G., Friedrich T, Kreslavski V.D., Zharmukhamedov S.K, Los D.A., Kuznetsov V. V., Allakhverdiev S. I. Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms // Biochim. Biophys. Acta. 2014. Vol. 1837. P.835-848.

Suzuki N., Mittler R. Reactive oxygen species-dependent wound responses in animals and plants // Free Rad. Biol. Med. 2012.Vol. 53. P.2269-2276.

 
Посмотреть оригинал
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Пред   СОДЕРЖАНИЕ ОРИГИНАЛ
 

Популярные страницы