Нечетко-логические устройства сбора и обработки информации в системах автоматизации управления технологическими процессами и производством
В период с 1980 г. и по настоящее время параллельно с традиционными исследованиями в области нечеткой логики и математики интенсивно ведутся работы по практическому внедрению нечетких регуляторов, систем управления и экспертных систем в промышленную и непромышленную сферы. Как показано в [85], приоритет по коммерческому использованию результатов теории нечетких моделей управления принадлежит японским фирмам. К настоящему времени известно более 400 практических применений нечетких регуляторов и систем управления. Капиталовложения в исследования и разработку опытных образцов в этом направлении распределяются (в миллиардах долларов США) следующим образом:
- • в 1990 г.: Япония - 2, США - 0,2, Европа - 0,3,
- • в 1995 г.: Япония - 2, США - 0,8, Европа - 1,
- • в 2000 г.: Япония - 6, США - 3, Европа - 7 .
Такая интенсификация разработок и соответствующих материальных затрат основана на тщательном планировании и подробном маркетинге. Данным процессам предшествовал длительный период (с 1970 по 1980 гг.) исследовательских работ по разработке методов анализа, синтеза, моделирования и проектирования оптимальных структур моделей нечетких регуляторов и систем управления [11, 85]. На сегодняшний день в основу аппаратной реализации структуры интеллектуальной системы управления с нечетким регулятором положен нечеткий процессор. В таких системах снижение уровня сложности структурной реализации и соответствующего программно-аппаратного обеспечения достигается за счет применения встраиваемых специализированных микропроцессорных модулей на СБИС (как прототипов ЭВМ шестого поколения на нечетком процессоре) с заданным нечетким логическим выводом.
Для обработки нечеткой лингвистической информации микропроцессорными специализированными СБИС требуются соответствующие блоки нечеткой памяти, обеспечивающие хранение нечетких слов (функция принадлежности нечеткого множества квантуется и представляется в виде n-элементного вектора, называемого нечетким словом) для осуществления многошагового нечеткого вывода.
Следует отметить, что аппаратную реализацию приближенных рас- суждений в виде продукционных правил «если..., то...» с сотнями и тысячами нечетких импликаций трудно осуществлять в реальном времени на традиционных моделях ЭВМ. Поэтому соответствующие разработки инструментальных средств ведутся в направлении развития и усовершенствования элементной базы нечетких процессоров, а также структур самих процессоров (как специализированных нечетких ЭВМ, предназначенных для использования в автономном режиме или в качестве сопроцессора обычных ПЭВМ).
Самым первым разработанным цифровым нечетким процессором был FC 110 (фирмы Togai Infra Logic, США) на основе кристалла (чипа) нечеткого логического вывода, который представляет собой высокоэффективный сопроцессор для применения методов нечеткой логики и реализации нечетких алгоритмов управления в реальном времени. Процессор FC 110 имеет на одном чипе 256 бит оперативной памяти; байтовый формат данных; набор машинных команд составлен из ограниченного числа сложных инструкций (модификация RISC-архитектуры). Введены специальные команды для оценки левой и правой логических частей нечетких продукционных правил «если ..., то...», а также для построения сложных составных правил. При этом процессор FC 110 с рабочей частотой 10 МГц имеет скорость обработки правила 35 мкс, скорость вывода логических правил 28000 в 1 с (процессор 80386 с частотой 20 МГц имеет соответственно 400 мкс и 2300 правил в 1 с). Наиболее целесообразное применение спецпроцессора FC 110 - это нечеткий сопроцессор совместно с главной ЭВМ общего назначения, когда главный процессор выполняет все входные и выходные преобразования, а процессор FC 110 обеспечивает оценку состояния базы знаний. Символьный внутрисхемный эмулятор FC 1101 СЕ для процессора FC 110 создан для ускорения разработки, настройки и отладки прикладных интеллектуальных систем на нечеткой логике, в частности, для проектирования баз нечетких знаний экспертных систем. Примером эффективного применения процессора FC 110 является его использование в структуре нечеткого контроллера при решении задачи управления устойчивым состоянием перевернутого маятника [85]. Языком программирования для реализации базы нечетких знаний на нечетком процессоре FC 110 стал модифицированный нечеткий язык С, разработан также нечеткий язык программирования FPL. С системой разработки нечетких версий языка С можно объединить оболочки TIL-shell для построения программ управления с использованием баз знаний, сформированных с помощью версии TIL-shell. Сопроцессор FC 110 позволяет на базе ПЭВМ типа IBM PC обрабатывать более 370 тыс. нечетких продукционных правил (с двумя посылками) в 1 с, а также более 1 млн. булевых продукционных правил в -1 с; в частности, подсистема VME фирмы Togai обладает быстродействием четырех PC, используя четыре параллельно соединенных чипа FC 110 [11, 85].
Известны также реализации нечеткого процессора на основе аналоговых СБИС, где достигается высокая скорость логического вывода продукционных правил (от 1 до 10 млн. нечетких логических правил в 1 с).
Так, например, нечеткий процессор FUZ-M1 позволяет обрабатывать нечеткую информацию и осуществлять приближенные рассуждения в течение 100 нс; нечеткий регулятор (после поступления детерминированной информации) осуществляет процедуру управления на основе приближенного рассуждения. Здесь применяется СБИС, в которой на одном чипе реализуется нечеткое правило вывода типа обобщенного правила «Модус По- ненс» [85].
Новый вид нечеткого логического процессора разработан с использованием квантовых эффектов (на основе управляемых квантовых переходов Джозефсона). Процессор реализует 60 логических правил, обрабатывает 4 переменных за 300 мкс (последнее означает наличие скорости логического вывода 2-10 логических правил в 1 с) и сочетает в себе технологию цифровой и аналоговой техники [85].
В Европе и США ведутся интенсивные работы по интеграции fuzzy- команд в ассемблеры промышленных контроллеров встроенных устройств (чипы Motorola 68НС11.12.21). Такие аппаратные средства позволяют в несколько раз увеличить скорость выполнения приложений и компактность кода по сравнению с реализацией на обычном ядре. Кроме того, разрабатываются различные варианты fuzzy-сопроцессоров, которые контактируют с центральным процессором через общую шину данных, концентрируют свои усилия на размывании/уплотнении информации и оптимизации использования правил (продукты Siemens Nixdorf).
Наиболее распространенными разработками инструментальных средств [85] для программно-аппаратного обеспечения нечетких регуляторов и систем управления являются: системы инструментальной поддержки и информационного обеспечения FRUITAX, экспертная система управления процессами обработки изображений LINK man, компьютерная диалоговая система супервизорного управления FLS, система автоматизированного проектирования процессов управления IFCS, системы конструирования программного обеспечения типа RPX-FUZZY, FS-2000 и др. На основе данных инструментальных средств разработана серия нечетких регуляторов и систем управления типа FZ-1000 - FZ-5000, MICREX- F 250, MICREX- F 500, FOC-2001, FOC-2001A, FOC-2001AH, ЕХ-100, ЕХ-1000, ЕХ-1000/32, EX- FUZZY, НХ-1000 и мн. др. Также в [80] показаны примеры архитектур универсального нечеткого регулятора типа FZ—3000/3010 фирмы Omron, используемого в станках с числовым программным управлением и нечеткого регулятора типа MICREX -500 фирмы Fuji Electric, используемого в системе управления подъемными кранами. Оба регулятора реализованы на инструментальных средствах FRUITAX. Для наглядности на рис. 1.4 показана структурная схема нечеткого регулятора типа FZ— 3000/3010 фирмы Omron, используемого в станках с числовым программным управлением.

Рис. 1.4. Структура нечеткого регулятора типа FZ—3000/3010 фирмы Omron
В общем случае нечеткий регулятор типа FZ—3000/3010 фирмы Omron содержит: 1 - внешнее периферийное вычислительное устройство на базе ПЭВМ; 2 - аналоговую шину высокоскоростной передачи данных; 3 -арифметико-логическое устройство; 4 - блок памяти; 5 - устройство связи; 6 -блок цифрового ввода-вывода; 7 - блок нечеткого ввода-вывода; 8 - блок дефаззификации (выбора четкого значения); 9, 10 - блок нечеткого логического вывода; 11 - общую шину передачи цифрового сигнала; 12 - станок с числовым программным управлением.
Для подобных нечетких регуляторов разработаны рабочие станции для АРМ проектирования нечетких процессоров. Разработанные АРМ позволяют построить логические регуляторы, основу которых составляют нечеткие процессоры на СБИС. При этом по качеству переходных процессов и достижению целей управления построенные регуляторы превосходят традиционные П-, ПИ- и ПИД-регуляторы.
Среди отечественных разработок следует отметить специализированные аппаратные средства для реализации нечетких алгоритмов управления, созданные под руководством профессора А.Н.Мелихова [21]. В рамках этих исследований были достигнуты следующие результаты:
- • разработаны теория, методы и алгоритмы преобразования нечеткой информации и знаний для проектирования нового поколения нечетких процессоров, контроллеров, ускорителей и компьютеров, позволяющих на основе нечеткой логики и нечеткой математики выполнять обработку четкой (цифровой) и нечеткой (качественной) информации и знаний;
- • созданы методики проектирования нечетких компьютеров, способных выполнять логические (правдоподобные) рассуждения на основе оригинальных алгоритмов идентификации (распознавания) нечетких ситуаций;
- • созданы аппаратные средства поддержки проектирования и функционирования интегральных систем обработки информации, принятия решений, ситуационного управления, распознавания, обучения, прогнозирования и других систем, являющихся интегральными помощниками человека в его профессиональной деятельности в различных предметных областях, позволяющих на единой логической базе выполнять вычислительные и качественные алгоритмы преобразования информации, что позволяет строить интеллектуальные системы, основанные как на известных способах представления накопления и преобразования знаний, так и на методах и алгоритмах представления и обработки нечеткой информации и знаний [21].
В середине 1980-х гг. были разработаны ряд лингвистических блоков, устройств и комплексов, позволяющих обрабатывать нечеткую информацию, реализовывать операции над нечеткими множествами, выполнять нечеткие алгоритмы управления - например, вычислительный комплекс обработки нечеткой информации, на базе персональной ЭВМ, включающий специальный сопроцессор нечеткой информации, ориентированный на использование в человеко-машинных системах и системах искусственного интеллекта, а также ГПСС, представляющий собой комплекс программных средств автоматизации разработки и создания индивидуальных советующих систем на базе ПЭВМ [21], в основу конструирования технических средств которых, были положены следующие принципы:
- • лингвистические вычислительные комплексы ориентированы на реализацию различных нечетких алгоритмов управления и состоят из лингвистических устройств и стандартных средств вычислительной техники;
- • лингвистические устройства ориентированы на реализацию определенных нечетких алгоритмов или операций по преобразованию нечеткой информации и состоят из лингвистических блоков;
- • лингвистические блоки ориентированы на реализацию элементарных алгоритмов различных операций над нечеткими множествами и нечеткими логическими переменными и состоят из стандартных элементов цифровой схемотехники (триггеры, сумматоры, мультиплексоры, схемы сравнения, регистровые структуры и т.д.) и элементов микропроцессорной техники с микропрограммным управлением;
- • представление значений функции принадлежности осуществляется в виде однобайтовых чисел с фиксированной точкой с дискретностью от 0,01 до 0,005 (например, «,00000001» = 1/256 ~ 0,004; «,00110011» = 51/256 ~ 0,2; «,11111111» = 255/256 ~1);
- • операции над независимыми друг от друга переменными, а также значениями функций принадлежности в интервале [0, 1], можно проводить параллельно путем введения аппаратной избыточности.
В 1995-1696 гг. был разработан процессор FuzCop 2.0, обеспечивающий реализацию как композиционного, так и ситуационного, методов нечеткого логического вывода. Производительность FuzCop 2.0 при максимальной тактовой частоте 10 МГц и базе знаний из 64 правил, в условия истинности которых включается информация по 16 параметрам оценки текущей ситуации, составляет не менее 200 тыс. нечетких логических выводов в секунду (патент РФ № 019706 «Устройство для обработки нечеткой информации» (секционируемый нечеткий процессор), БИ №8 от 20.03.1996).
Процессор FuzCop 2.0 представляет собой нечеткий логический процессор, выполненный по технологии полузаказной СБИС, и имеет конвейерную архитектуру с векторным процессором. Его структурная схема приведена на рис. 1.5.
Процессор FuzCop 2.0 состоит из векторного процессора (ВП), блока параллельного определения минимума или максимума (БПАР), блока формирования промежуточных результатов (БФПР), блока последовательного сравнения с порогом (БПОС), коммутатора данных текущей ситуации (КДТС), коммутатора выходных данных (КВД), блока определения адреса эталонной ситуации (БОА) и регистра команд (RGK).
Программной поддержкой процессора FuzCop 2.0 стал программный комплекс FuzEx 2.0, предназначенный для проектирования систем, основанных на нечетких знаниях и использующих процессор нечеткого логического вывода FuzCop 2.0, либо его программный эмулятор для нечеткого логического вывода. В настоящее время в России работы по созданию оптоэлектронных процессоров нечеткой логики ведутся в ФИАН им. Лебедева, в ВЦ РАН и МЭИ, а также в Санкт-Петербургском государственном университете информационных технологий, механики и оптики.

Рис. 1.5. Структурная схема нечеткого процессора FuzCop 2.0
Так, в последнем, сотрудниками кафедры «Фотоники и оптоинформатики» были разработаны оптические технологии искусственного интеллекта, в частности, технологии реализации вычислительных операций, присущих нечеткой логике.
Принципы выполнения вычислений в отношении операций нечеткой логики, подробно описанные в [1, 26], базируются на использовании алгебры Фурье-дуальных операторов, а сами оптические нсчсткис процессоры физически реализуются схемами и устройствами, построенными на основе методов Фурье-оптики и Фурье-голографии.
Можно привести еще одну реализацию нечеткого оптического устройства. В работе [10] описан оптоэлектронный фаззификатор (рис. 1.6, а), содержащий источник света, оптический канал передачи, ЭОД, блок ФП.

Рис. 1.6. Схема оптоэлектронного фаззификатора (а) и диаграмма площади засветки ФП (б)
Принцип действия оптоэлектронного фаззификатора состоит в следующем. Коллимированный луч света диаметром d от источника А отклоняется ЭОД таким образом, что засвечивает, в зависимости от угла ^(я), одно из отверстий маски М. Угол отклонения зеркала ЭОД ф является функцией входной величины х. За маской устанавливаются либо фотоприемники, либо оптические элементы канализации света для передачи сигналов (при необходимости — после нормализации) на последующую обработку. Выходной функцией системы является площадь засветки ФП или входной апертуры оптической системы Si, где i - номер засвеченного отверстия маски. При диаметре отверстий D = d, их шаге W = 1,5D, постоянном расстоянии от ЭОД до маски, квадратных сечениях отверстий и пучка вид зависимости Sj(^), а следовательно, и Sj(x), примет вид, показанный на рис. 1.6, б.
Если принять входной сигнал описанной дефлекторной системы как «четкий» входной параметр х, то площадь засветки каждого отверстия маски Sj, отнесенная к Smax, будет соответствовать величине А(х) для каждого i- го терма. Интерпретируя пример лингвистически, можно сказать, что если входной величиной х является температура, то засветка первого отверстия маски будет соответствовать значению температуры «низкая», второго - «средняя», и третьего - «высокая».
За рубежом работы в направлении разработок различных оптических методов и оптоэлектронных средств нечетко-логической обработки информации ведутся в ряде ведущих университетов США: City University of New York, The University of Tennessee, The University of Maiami, Northwestern University, Massachusetts Institute of Technology, University of Colorado и др., а также в Китае и Японии.
Разработки коммерческих продуктов в смежных областях (оптические логические процессоры и вентили, системы оптической памяти) ведут такие известные своими инновационными разработками фирмы, как Highland Technology, Physical Optics Corp., InPhase Technologies, Digital Optical Technologies, INTEL и др.
Рассмотрим главные достоинства и недостатки рассмотренных выше аппаратных средств нечетко-логических систем.
Главным достоинством реализаций нечетких процессоров на основе цифровых, цифро-аналоговых и микропроцессорных СБИС является достаточная гибкость проектирования при использовании в конкретных приложениях. Это обеспечивается наличием мощного комплекса инструментальных аппаратно-программных средств разработки нечетких регуляторов, наличием АРМ конструкторов нечетких регуляторов, которые позволяют построить логические регуляторы, основу которых составляют нечеткие процессоры па СБИС. Кроме того, микропроцессорные и цифровые СБИС обладают достаточным запасом надежности и стабильностью характеристик и параметров. Однако описанные микропроцессорные реализации нечетких регуляторов не способны использовать в полной мере все потенциальные возможности нечеткой логики по следующим объективным причинам:
- • их быстродействие ограничено в части реализации ряда сложных нечетких операторов из-за последовательной обработки данных, присущей современным микропроцессорным средствам;
- • погрешность вычислений с течением времени постоянно растет из-за неизбежных методических ошибок, обусловленных использованием цифровых методов вычисления;
- • в микропроцессорных системах обработки нечеткой информации с увеличением значений базовых шкал нечетких переменных происходит нелинейное увеличение времени выполнения операций над элементами термов этих переменных, а также этапов фаз- зификации и дефаззификации; увеличение значений базовых шкал нечетких множеств ведет к неизбежному увеличению областей памяти микропроцессорных реализаций для хранения и обработки данных, что ведет к увеличению времени выполнения вычислительных операций.
Так, например, специализированный вычислительный комплекс обработки нечеткой информации, выполненный на базе микропроцессорных средств [21], позволяет осуществить операцию выборки элемента терма лишь за 5 мкс, а реализацию одной микрокоманды только за 2 мкс. При реализации на ПЭВМ типа PC ХТ/АТ с типовым 16-разрядным процессором 8086 время, требуемое на обработку процесса нечеткого логического вывода из набора 96 продукционных правил (5 входных переменных и 2 выходные переменные) составило 30 с [67]. Очевидно, что для работы систем управления в реальном времени требуется значительно большее быстродействие.
Кроме того, существующие микропроцессорные системы обработки нечеткой информации обладают значительными габаритами, массой и потребляемой мощностью.
Распараллеливание вычислений в микропроцессорных аппаратных средствах требует введения аппаратной избыточности, что, в свою очередь, ставит проблемы синхронизации параллельных вычислительных потоков и увеличения мощности энергопотребления, а также массогабаритных характеристик системы в целом. Так, мультимикропроцессорная система, описанная в [8], имеет габаритные размеры 600x2200x1000 мм, массу порядка 170 кг и мощность потребления 4,5 кВт, а задержка пакетов данных по ведущей вычислительной сети составляет до 3....4 мкс.
В отношении разработанных оптических методов, реализующих вычисления в нечеткой логике, можно сказать, что использование в качестве переносчика информации оптического потока позволяет решить проблемы быстродействия и распараллеливания вычислений с достаточной точностью вычислений на произвольном интервале времени обработки информации. Но используемые на сегодняшний день методы, такие как методы Фурье-оптики и Фурье-голографии, достаточно трудно реализуемы и нс позволяют обеспечить весь комплекс операций над нечеткими множествами и отношениями, а также не дают возможности реализовать нечеткологический вывод в целом. Например, оптические методы, описанные в [26], позволяют реализовать только операции min-конъюнкции, шах- дизъюнкции, min-мпликации, тавтологии и противоречия. Описанное в [1] оптоэлектронное логическое устройство использует классические принципы оптических методов обработки информации и интегральной оптики, обладает простотой конструкции, но реализует только комплекс параметризованных t-норм и t-конорм.
В отношении оптоэлектронного фаззификатора, описанного в [10] и показанного на рис. 1.6 а), в качестве недостатка можно указать невозможность реализации произвольных функций принадлежности.
Таким образом, оказывается весьма актуальной проблема поиска новых методов, подходов и устройств при построении нечетких процессоров, позволяющих реализовать весь спектр операций нечеткой логики, причем, с быстродействием, обеспечивающим обработку входной информации практически в реальном масштабе времени, а также обладающих простотой конструкции и обеспечивающих высокую точность вычисления на произвольном интервале времени обработки информации.
Решению этой проблемы и посвящено дальнейшее изложение материала книги.