Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника arrow Коррозия металлов и средства защиты от коррозии

ЭЛЕКТРОХИМИЧЕСКАЯ ЗАЩИТА

Электрохимическая защита является способом противокоррозионной защиты металлических материалов, основанным на снижении скорости их коррозии путем смещения потенциала до значений, соответствующих крайне низким скоростям растворения. Сущность метода состоит в уменьшении скорости электрохимической коррозии металла при поляризации электрода от источника постоянного тока или при контакте с добавочным электродом, являющимся анодом по отношению к корродирующей системе.

В зависимости от направления смещения потенциала металла электрохимическая защита бывает катодной и анодной.

При катодной защите снижение скорости растворения металла происходит вследствие смещения потенциала в область значений, отрицательнее —Фкор.

При анодной защите потенциал защищаемой конструкции смещают в область, положительнее сркор. При этом происходит переход металла из активного в пассивное состояние.

Катодная защита применяется в тех случаях, когда металл не склонен к пассивации. Осуществление катодной защиты возможно различными способами: снижением скорости катодной реакции (например, деаэрацией растворов, в которых протекает коррозионный процесс); поляризацией от внешнего источника тока; созданием контакта с другим материалом, имеющим в рассматриваемых условиях более отрицательный потенциал свободной коррозии (протекторная защита).

Основным критерием катодной защиты является защитный потенциал.

Защитным потенциалом называется потенциал, при котором скорость растворения металла принимает предельно низкое значение, допустимое для данных условий эксплуатации.

При организации катодной защиты отрицательный полюс внешнего источника тока присоединяют к защищаемой металлической конструкции, а положительный полюс — к вспомогательному электроду, работающему как анод.

В процессе защиты анод разрушается и его необходимо периодически заменять.

Источниками внешнего тока при катодной защите служат станции катодной защиты, обязательными элементами которых являются: преобразователь (выпрямитель), вырабатывающий ток; то- коподвод к защищаемой конструкции, электрод сравнения, анодные заземлители, анодный кабель.

Анодные заземлители, соединяющие положительный полюс катодной станции с землей, изготавливаются из различных материалов — стали, графита, ферросилиция, титана, платинированного титана и др.

Использование катодной защиты сопряжено с опасностью так называемой перезащиты. В этом случае вследствие слишком сильного смещения потенциала защищаемой конструкции в отрицательную сторону может резко возрасти скорость выделения водорода. Результатом этого является водородное охрупчивание или коррозионное растрескивание материалов и разрушение защитных покрытий.

В качестве протекторов можно применять металлы: Al, Fe, Mg, Zn и цинковые протекторы с добавками Cd (0,025—0,15%) и А1 (0,1 — 0,5%).

Анодную защиту применяют при эксплуатации в хорошо электропроводных средах оборудования, изготовленного из легко пассивирующихся материалов — углеродистых, низколегированных нержавеющих сталей, титана, высоколегированных сплавов на основе железа. Анодная защита перспективна для защиты оборудования, изготовленного из разнородных пассивирующихся материалов, например, нержавеющих сталей различного состава, сварных соединений.

Анодная защита пассивирующими ингибиторами-окислителями основана на том, что в процессе их восстановления возникает ток, достаточный для перевода металла в пассивное состояние. В качестве ингибиторов могут быть использованы соли Fe3+, нитраты, бихро- маты и др. Применение ингибиторов позволяет защищать металл в труднодоступных местах — щелях, зазорах. Недостатком этого способа защиты является загрязнение технологической среды.

При анодной защите методом катодного легирования в сплав вводят добавки (чаще благородный металл), на которых катодные реакции восстановления деполяризаторов осуществляются с меньшим перенапряжением, чем на основном металле.

Анодная защита от внешнего источника основана на пропускании тока через защищаемый объект и на смещении потенциала коррозии в сторону более положительных значений.

При стационарном режиме работы установки величина тока поляризации, требуемого для поддержания устойчивого пассивного состояния, постоянно меняется вследствие изменения эксплуатационных параметров коррозионной среды (температуры, химического состава, условий перемешивания, скорости движения раствора и др.). Поддерживать потенциал металлоконструкции в заданных границах можно путем постоянной или периодической поляризации. В случае периодической поляризации включение и выключение тока производят либо при достижении определенного значения потенциала, либо при его отклонении на определенную величину.

 
Посмотреть оригинал
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Пред   СОДЕРЖАНИЕ ОРИГИНАЛ   След >
 

Популярные страницы