Современные направления развития нейросетевых технологий

Детальный анализ разработок нейросетей позволяет выделить основные перспективные направления современного развития ней- рокомпьютерных технологий: нейропакеты, нейросетевые экспертные системы, СУБД с включением нейросетевых алгоритмов, обработка изображений, управление динамическими системами и обработка сигналов, управление финансовой деятельностью, оптические нейрокомпьютеры, виртуальная реальность. Разработками в этой области занимается более 300 заграничных компаний, причем число их постоянно увеличивается. Среди них такие гиганты, как Intel, IBM и Motorola. Сегодня наблюдается тенденция перехода от программных реализаций к программно-аппаратной реализации нейросетевых алгоритмов с резким увеличением числа разработок нейрочипов с нейросетевой архитектурой. Резко выросло количество военных разработок, в основном направленных на создание сверхскоростных, «умных» супервычислителей.

Если говорить про основное направление — интеллектуализацию вычислительных систем, придание им свойств человеческого мышления и восприятия, то здесь нейрокомпьютеры — практически единственный путь развития вычислительной техники. Большинство неудач на пути усовершенствования искусственного интеллекта на протяжении последних 30 лет связано с тем, что для решения важных и сложных по постановке задач выбирались вычислительные средства, неадекватные по возможностям решаемой задаче, в основном из числа традиционных компьютеров. При этом, как правило, не решалась задача, а показывалась принципиальная возможность ее решения. Сегодня активное развитие компьютерных технологий создало объективные условия для построения вычислительных систем, адекватных по возможностям и архитектуре практически любым задачам искусственного интеллекта.

В Японии еще в 1993 г. была принята программа «Real world computing program». Ее основная цель — создание эволюционирующей адаптивной ЭВМ. Проект был рассчитан на 10 лет. Основой разработки является нейротехнология, которая используется для распознавания образов, обработки семантической информации, управления информационными потоками и роботами, способными адаптироваться к окружающей среде. Только в 1996 г. было проведено около сотни международных конференций по нейрокомпьютерам и смежным проблемам. Разработки нейрокомпьютеров ведутся во многих странах мира, в частности в Австралии создан образец коммерческого супернейрокомпьютера.

Для какого класса задач эффективно применение вычислительного устройства, построенного по новой технологии? Относительно нейрокомпьютеров ответ на этот вопрос постоянно меняется на протяжении 50 лет.

В истории вычислительной техники всегда были задачи, не решаемые традиционными компьютерами с архитектурой фон Неймана, и для них переход к нейросетевым технологиям закономерен в случае увеличения размерности пространства или сокращения времени обработки. Можно выделить три участка применения нейросетевых технологий: общий, прикладной и специальный.

Общие задачи

Эти задачи сводятся к обработке нейронною сетью многомерных массивов переменных, например:

  • • контроль кредитных карточек. Сегодня 60% кредитных карточек в США обрабатываются с помощью нейросетевых технологий;
  • • система выявления скрытых веществ с помощью системы на базе тепловых нейронов и с помощью нейрокомпьютера на заказанных цифровых нейрочипах. Подобная система фирмы SAIC эксплуатируется во многих аэропортах США при обзоре багажа для выявления наркотиков, взрывных веществ, ядерных и других материалов;
  • • система автоматизированного контроля безопасного сохранения ядерных изделий.

Прикладные задачи Обработка изображений

Перспективными задачами обработки изображений нейрокомпьютеров является обработка аэрокосмических изображений (сжатие с восстановлением, сегментация, обработка изображений), поиск, выделение и распознавание на изображении подвижных объектов заданной формы, обработка потоков изображений, обработка информации в высокопроизводительных сканерах.

Обработка сигналов

В первую очередь это класс задач, связанных с прогнозированием временных зависимостей:

  • • прогнозирование финансовых показателей;
  • • прогнозирование надежности электродвигателей;
  • • предвидение мощности АЭС и прогнозирование надежности систем электропитания на самолетах.

При решении этих задач наблюдается переход от простейших регрессионных и других статистических моделей прогноза до нелинейных адаптивных экстраполирующих фильтров, реализованных в виде сложных нейронных сетей.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >