Изменение состава атмосферы и климата

Наиболее разрушительно из воздействий деятельности человека на сообщества - выделение загрязнителей. Напомним, что загрязнителем является любое вещество, попадающее в атмосферу, почву или природные воды и нарушающее идущие там биологические, иногда и физические или химические, процессы. К загрязнителям нередко относят радиоактивное излучение и тепло. Загрязнение среды - одна из самых острых проблем. Вследствие деятельности человека в атмосферу поступают углекислый С02 и угарный СО газы, диоксид серы S02, метан СН4, оксиды азота N02, NO, N20. Основные источники их поступления - это сжигание ископаемого топлива, выжигание лесов и выбросы промышленных предприятий. При использовании аэрозолей в атмосферу поступают хлорфгоруглероды, в результате работы транспорта - углеводороды (бензапирен и др.) (табл. 4.1, 4.2).

За счет газов антропогенного происхождения образуются кислотные осадки и смог. Кислотные осадки - серная и азотная кислоты, образующиеся при растворении в воде диоксидов серы и азота и выпадающие на поверхность Земли вместе с дождем, туманом, снегом или пылью. Попадая в озера, кислотные осадки нередко вызывают гибель рыб или всего животного населения. Они также могут вызывать повреждения листвы, а часто гибель растений, ускорять коррозию металлов и разрушение здания. Кислотные дожди большей частью наблюдаются в районах с развитой промышленностью. Хотя капельки воды быстро удаляются из атмосферы, они вес же распространяются на сотни километров от производящих выбросы теплостанций, промышленных предприятий и т.д. В результате сложных химических реакций из смеси газов (главным образом окислов азота и углеводородов, содержащихся в выхлопных газах автомобилей), протекающих в нижних слоях атмосферы, под действием солнечного света образуются различные вещества, снижающие видимость, которые получили название смога. Смог крайне вреден для живых организмов. Одним из вредных компонентов смога является и озон (О,). В крупных городах при образовании смога его естественная концентрация повышается в 10 и более раз. Озон здесь начинает оказывать вредное воздействие на лёгкие и слизистые оболочки человека и на растительность.

Таблица 4.1

Десять самых сильных загрязнителей воздуха и океана

1. Диоксид углерода

Образуется при сгорании всех видов топлива. Увеличение его содержания в атмосфере приводит к повышению её температуры, что чревато пагубными геохимическими и экологическими последствиями

2. Оксид углерода

Образуется при неполном сгорании топлива. Может нарушить тепловой баланс верхней атмосферы

3. Сернистый газ

Содержится в дымах промышленных предприятий. Вызывает обострение респираторных заболеваний, наносит вред растениям. Разъедает известняк и некоторые камни

4. Оксиды азота

Создают смог и вызывают респираторные заболевания и бронхит у новорождённых. Способствует чрезмерному разрастанию водной растительности

5. Фосфаты

Содержатся в удобрениях. Главный загрязнитель вод в реках и озёрах

6. Ртуть

Один из опасных загрязнителей пищевых продуктов, особенно морского происхождения. Накапливается в организме и вредно действует на нервную систему

7. Свинец

Добавляется в бензин. Действует на ферментные системы и обмен веществ в живых клетках

8. Нефть

Приводит к пагубным экологическим последствиям, вызывает гибель планктоновых организмов, рыбы, морских птиц и млекопитающих

9. Ддг и другие пестициды

Очень токсичны для ракообразных. Убивают рыбу и организмы, служащие кормом для рыб. Многие являются канцерогенами

10. Радиация

В превышенных по отношению к допустимым дозах приводит к злокачественным новообразованиям и генетическим мутациям

Таблица 4.2

Основные газовые примеси в атмосфере

Антропогенные изменения в атмосфере

Диоксид

углерода

Метан

Оксиды

азота

Оксид

углерода

Диоксид

серы

Фреоны

Озон

Парниковый эффект

+

+

+

-

+

+

Разрушение слоя озона

+

Кислотные дожди

+

+

Фотохимический смог

+

+

Пониженная видимость атмосферы

+

+

Ослабление самоочищения атмосферы

-

-

«+» - усиление эффекта; «-» - ослабление эффекта

С антропогенными изменениями атмосферы связано и разрушение озонового слоя, который является защитным экраном от ультрафиолетового излучения. Особенно быстро процесс разрушения озонового слоя происходит над полюсами планеты, где появились так называемые озоновые дыры. В 1987 году зарегистрирована расширяющаяся год от года (темпы расширения - 4% в год) озоновая дыра над Антарктикой (выходящая за контуры материка) и менее значительное аналогичное образование в Арктике.

Опасность истощения озонового слоя заключается в том, что может снизиться поглощение губительного для живых организмов ультрафиолетового излучения. Ученые считают, что основной причиной истощения озонового слоя (экрана) является применение людьми хлорфторуглеродов (фреонов), которые широко используются в быту и производстве в виде аэрозолей, дореагенгов, пенообразователей, растворителей и т.д. В 1990 году мировое производство озоноразрушающих веществ составляло более 1300 тыс. т.

Хлорфторуглероды (CFCn и CF2C12), попадая в атмосферу, разлагаются в стратосфере с выделением атомов хлора, которые катализируют превращение озона в кислород. В нижних слоях атмосферы фреоны могут сохраняться в течение десятилетий. Отсюда они поступают в стратосферу, где в настоящее время их содержание ежегодно увеличивается на 5%. Предполагается, что одной из причин истощения озонового слоя может быть и сведение лесов как продуцентов кислорода на Земле. Фреоны пропускают солнечный свет, но частично задерживают тепловое излучение, испускаемое поверхностью Земли.

Быстрыми темпами растет в атмосфере содержание углекислого газа и метана. Эти газы, как уже говорилось, обусловливают «парниковый эффект». Вот уже четверть века идут споры о глобальном потеплении. Не только специалисты, но и общественность, а также СМИ озабочены изменениями климата, все чаще задаваясь вопросами: каков антропогенный вклад в парниковый эффект, неизбежен ли подъем глобальных температур или возможен спад и т.п.

За последние 100 лет концентрация в атмосфере углекислого газа выросла на 25%, а метана - на 100%. Это сопровождалось глобальным повышением температуры. Так, за 1980-е гг. средняя температура воздуха в северном полушарии повысилась по сравнению с концом XIX столетия на 0,5-0,6°С. На Земле, по прогнозам, средняя температура к 2000 году повысится на 1,2°С, а в ближайшие 50 лет - на 2-5°С по сравнению с доиндустриальной эпохой.

Потепление может привести к интенсивному таянию ледников и повышению на 0,5-1,5 м уровня Мирового океана, при этом окажутся затопленными многие густонаселенные прибрежные районы. Однако при общем увеличении количества осадков в центральных районах материков климат может стать более засушливым. Например, в 80-90-х годах XX столетия в Африке и Северной Америке участились катастрофические засухи, которые связывают с глобальным потеплением.

На примере загрязнения атмосферы видно, что даже слабые воздействия могут приводить к крупным неблагоприятным последствиям для природных систем.

Но в случае с антропогенным воздействием на состояние атмосферы не все так просто. Один из крупнейших специалистов по палсоклиматам Земли профессор МГУ им. Ломоносова Н.А. Ясаманов, отвечая на вопрос, в чем же причины таких кардинальных перемен, делает вывод, что, зная это, легче не только понять, почему меняется климат в современную эпоху, но и строить прогнозы.

Первое, что напрашивается в качестве причины климатических флуктуаций, - это периодическое изменение положения Земли в космическом пространстве и, стало быть, неравномерное поступление солнечной энергии. Это, действительно, важная причина, но она ответственна только за продолжительные (десятки миллионов лет) климатические изменения. Так что для прогнозов на десятки и даже согни лег искать причины изменений климата в космосе не стоит. Кроме того, чисто космическими причинами не объяснить колебания содержания С02 в атмосфере, запечатленные растительностью в результате фотосинтеза.

Вторая причина - состояние атмосферы, ее прозрачность и концентрация парниковых газов. Ведь атмосфера пропускает не всю солнечную радиацию. Часть ее она рассеивает и отражает обратно в космическое пространство, и лишь 44% потока излучения достигает земной поверхности. Атмосферный озон, как известно, задерживает ультрафиолет.

Современная атмосфера - результат долгой эволюции. Когда-то в ней не было кислорода и азота, а были только углекислый газ, водяной пар, метан, аммиак, водород и пары кислот. Первый миллиард лет в атмосфере преобладал углекислый газ, но к концу этого периода в ней появились азот и кислород. Содержание кислорода достигло максимума 500 млн лет назад. А ещё раньше возник озоновый экран, защитивший живые существа от ультрафиолетового излучения и позволивший жизни выйти на сушу.

Высокая концентрация С02 в атмосфере обеспечивала парниковый эффект и высокие температуры в самые теплые эпохи геологического прошлого. Однако временами концентрация сильно менялась. Как только она становилось меньше, наступали похолодания. Согласованные изменения концентрации С02 и температуры (как в геологическом прошлом, гак и в настоящем) дали повод считать, что именно от содержания С02 зависел парниковый эффект и приземная температура. При этом оставался вопрос: откуда в атмосфере брался избыток СО? и как он расходовался?

Выделяющийся из земных недр и почвы С02 поглощался растительностью и почвенными микроорганизмами и вследствие высокой плотности не мог подниматься в атмосферу. Основным его поглотителем, как уже отмечалось, служат гидросфера и растительность, поглощающая и перерабатывающая С02 при фотосинтезе. Чем больше С02 в атмосфере и чем выше температура, тем больше на Земле фитомасса. При отсутствии притока С02 растительность настолько интенсивно поглощает его из атмосферы, что его содержание падает, и начинается похолодание. Это четко прослеживается при анализе палеоклиматов. Какими бы причинами ни вызывались потепления или похолодания, всегда отмечалась корреляция между содержанием С02 в атмосфере и растительным покровом.

Что же происходит ныне? На фоне потепления рост содержания С02 в атмосфере все больше связывают с антропогенным выбросами. Но ведь в прошлом, когда не было человека, оно регулировалось природными процессами. Его приток из земных недр, как и от антропогенных выбросов, невелик, ибо он гораздо тяжелее воздуха. Его не поднимут в тропосферу даже потоки горячего воздуха и дыма. Но он мог образоваться в результате разложения восходящих потоков метана, нарастающих, например, при любых подвижках земной коры. Так, из анализа геологического прошлого следует, что потеплениям всегда предшествовали расширение морского дна и расхождение континентов.

Подводя итоги, можно высказать предположение, что в нынешнем глобальном потеплении «повинен» в основном метан, как уже отмечалось, интенсивно поступающий в атмосферу из разных источников. Проверить это непосредственными наблюдениями непросто, ибо скорость его перемещения в атмосфере высока, а срок жизни мал. Но неуклонный рост содержания в атмосфере метана, фиксируемый в последние десятилетия, заставляет усомниться в том, что потепление вызвано лишь антропогенными факторами. А взяться ему есть откуда! И в нашу эпоху происходят медленные перемещения литосферных плит, а на континентах (Байкал, Восточно-Африканские Великие озера) и морском дне (Красное море, Индийский и Атлантический океаны) образуются гигантские рифты, что сопровождается наземными и особенно подводными базальтовыми излияниями. Все эти процессы могут сопровождаться масштабными выбросами метана в атмосферу, что, как мы видели, способно вызвать потепление, неоднократно отмечавшееся в прошлом.

Подход к решению проблемы климатических изменений должен быть хорошо продуман. Исследования последних лет показывают, что климатическая система - одна из сложнейших на Земле, требующая взаимосвязанного изучения глобальных изменений в океане, атмосфере, криосфере, почве, лесах и других системах. Невозможно вычленить из нее выбросы парниковых газов и сконцентрироваться только на квотах, как нельзя допускать чрезмерной политизации этой далекой еще от решения научной проблемы.

В основу развития человечества должна быть положена стратегия адаптации к природе и, в частности, к меняющемуся климату. Климатические природные изменения неизбежны. По мнению академика В.М. Котлякова, десять и более лет назад главным фактором изменения климата считали увеличение выбросов парниковых газов, что и повлекло за собой политические решения о квотах на выбросы, но сейчас позиция большинства ученых претерпела серьёзные изменения.

Главный вывод заключается в том, что неожиданные изменения климата в прошлом, очевидно, связаны с нелинейными процессами, в частности теми, которые влияют на формирование глубоких вод в Атлантике. Неустойчивость теплого климата может значительно расширить свои границы. В кернах сохранились следы быстрого потепления: подъем температуры на 5°С мог происходить за немногие десятилетия.

Если глобальный тепловой баланс Земли серьезно зависит от парникового эффекта, накладывающегося на космические закономерности поступления энергии от Солнца с присущими им изменениями (а именно таков главный вывод анализа керна из скважины на станции Восток), то региональные особенности климата определяются, прежде всего, колебаниями циркуляции вод океана в масштабах десятилетий.

Климатическая опасность может подойти и с другой стороны. Это «ядерная зима».

Из известных ныне моделей различной сложности для расчета изменений климата в результате термоядерного конфликта одной из наиболее совершенных, по мнению сотрудников ВЦ РАН В.П. Пархоменко и А.М. Тарко, является трехмерная гидродинамическая модель ВЦ РАН. Первые расчеты, проведенные по этой модели В.В. Александровым с коллегами под руководством Н.Н. Моисеева, дают географическое распределение всех метеорологических характеристик в зависимости от времени, прошедшего с момента ядерного конфликта, что делает результаты моделирования чрезвычайно наглядными, реально ощущаемыми. Сходные результаты по согласованному сценарию ядерной войны одновременно получили американские ученые. В дальнейших работах оценены эффекты, связанные с распространением аэрозолей, исследована зависимость характеристик «ядерной зимы» от начального распределения пожаров и высоты подъема сажевого облака. Проведены расчеты и для двух «предельных сценариев», взятых из работы группы К. Сагана: «жесткого» (суммарная мощность взрывов 10 000 Мт) и «мягкого» (100 Мт).

В первом случае используется примерно 75% суммарного потенциала ядерных держав. Это так называемая всеобщая ядерная война, первичные, немедленные последствия которой характеризуются огромными масштабами гибели и разрушений. Во втором сценарии «расходуется» менее 1% имеющегося в мире ядерного арсенала. Правда, и это 8200 «хиросим» («жесткий» вариант - почти миллион)!

Сажа, дым и пыль в атмосфере над регионами северного полушария, подвергшимися атакам, из-за глобальной циркуляции атмосферы распространятся на огромные площади, через 2 недели накрыв все Северное полушарие и частично Южное. Немаловажно, сколько времени сажа и пыль будут находиться в атмосфере и создавать непрозрачную пелену. Частицы аэрозоля будут оседать на землю под действием силы тяжести и вымываться дождями. Продолжительность оседания зависит от размера частиц и высоты, на которой они оказались. Расчеты с использованием упомянутой модели показали, что аэрозоль в атмосфере сохранится значительно дольше, чем полагали прежде. Дело в том, что сажа, нагреваясь солнечными лучами, станет подниматься вверх вместе с нагретыми ею массами воздуха и выйдет из области образования осадков. Приземный воздух окажется холоднее находящегося выше, и конвекция (включая испарение и выпадение осадков, гак называемый круговорот воды в природе) значительно ослабеет, осадков станет меньше, так что аэрозоль будет вымываться гораздо медленнее, чем в обычных условиях. Все это приведет к тому, что «ядерная зима» затянется.

Итак, главным климатическим эффектом ядерной войны, независимо от ее сценария, станет «ядерная зима» - резкое, сильное и длительное охлаждение воздуха над континентами (от 15° до 40°С в разных регионах). Особенно тяжёлыми последствия оказались бы летом, когда над сушей в Северном полушарии температура упадет ниже точки замерзания воды. Иными словами, всё живое, что не сгорит в пожарах, вымерзнет.

«Ядерная зима» повлекла бы за собой лавину губительных эффектов. Это прежде всего резкие температурные контрасты между сушей и океаном, поскольку последний обладает огромной термической инерцией, и воздух над ним охладится гораздо слабее. С другой стороны, как уже отмечалось, изменения в атмосфере подавят конвекцию, и над погруженными в ночь, скованными холодом континентами разразятся жестокие засухи. Если рассматриваемые события пришлись бы на лето, то примерно через 2 недели, как указывалось выше, температура у поверхности суши в Северном полушарии упадет ниже нуля, и солнечного света почти не будет. Растения не успеют приспособиться к низким температурам и погибнут. Если бы ядерная война началась в июле, то в Северном полушарии погибла бы вся растительность, а в Южном - частично. В тропиках и субтропиках она погибла бы почти мгновенно, ибо тропические леса могут существовать лишь в узком диапазоне температур и освещенности.

Многие животные в Северном полушарии также не выживут из-за недостатка пищи и сложности ее поиска в «ядерной ночи». В тропиках и субтропиках важным фактором будет холод. Погибнут многие виды млекопитающих, все птицы; рептилии могут сохраниться.

Если бы описываемые события происходили зимой, когда растения северной и средней полосы «спят», их судьбу при «ядерной зиме» определят морозы. Для каждого участка суши с известным соотношением пород деревьев, сравнивая температуры зимой и во время «ядерной зимы», а также данные о гибели деревьев в обычные и аномальные зимы с длительными морозами, можно оценить процент гибели деревьев при «ядерной зиме».

Образовавшиеся на огромных площадях мертвые леса станут материалом для вторичных лесных пожаров. Разложение этой мертвой органики приведёт к выбросу в атмосферу большого количества углекислого газа, нарушится глобальный цикл углерода. Уничтожение растительности (особенно в тропиках) вызовет активную эрозию почвы.

«Ядерная зима», несомненно, вызовет почти полное разрушение существующих ныне экосистем и, в частности, агроэкосистем, столь важных для поддержания жизнедеятельности человека. Вымерзнут все плодовые деревья, виноградники и т.п. Погибнут все сельскохозяйственные животные, поскольку инфраструктура животноводства окажется разрушенной. Растительность частично может восстановиться (сохранятся семена), но этот процесс будет замедлен действием других факторов. «Радиационный шок» (резкий рост уровня ионизирующей радиации до 500-1000 рад) погубит большинство млекопитающих и птиц и вызовет серьезное лучевое поражение хвойных деревьев. Гигантские пожары уничтожат большую часть лесов, степей, сельскохозяйственных угодий. Во время ядерных взрывов произойдет выброс в атмосферу большого количества окислов азота и серы. Они выпадут на землю в виде пагубных для всего живого «кислотных дождей».

Любой из этих факторов крайне разрушителен для экосистем. Но хуже всего то, что после ядерного конфликта они будут действовать синсргетически (т.е. нс просто совместно, одновременно, а усиливая действие каждого).

Вопрос о достоверности и точности результатов с научной точки зрения чрезвычайно важен. Однако «критическая точка», после которой начинаются необратимые катастрофические изменения биосферы и климата Земли, уже определена: «ядерный порог», как отмечалось, очень невысок - порядка 100 Мт.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >